The Ground Rules: Show your work! You must give sufficient justification for your answer-no credit will be given for answers that are unaccompanied by an explanation and/or clearly written calculations. Where required, answers must include the correct units and direction. Please keep 3 sig figs in your answer for numerical problems.

Point values are shown next to the problem; there are a total of 100 points on the exam.
$g=9.8 \mathrm{~m} / \mathrm{s}^{2}$, or you may approximate it as $g=10 \mathrm{~m} / \mathrm{s}^{2}$.
Some useful formulas

$$
\begin{gathered}
\Delta \vec{r} \equiv \vec{r}_{f}-\vec{r}_{i} \\
\vec{v}_{A V E} \equiv \frac{\Delta \vec{r}}{\Delta t} \\
\vec{v} \equiv \frac{d \vec{r}}{d t} \\
\vec{a}_{A V E} \equiv \frac{\Delta \vec{v}}{\Delta t} \\
\vec{a} \equiv \frac{d \vec{v}}{d t} \\
\vec{v}=\overrightarrow{v_{0}}+\vec{a} t \\
\vec{r}=\overrightarrow{r_{0}}+\overrightarrow{v_{0}} t+\frac{1}{2} \vec{a} t^{2} \\
v^{2}=v_{0}^{2}+2 a\left(x-x_{0}\right) \\
\Sigma \vec{F}=m \vec{a} \\
\vec{F}_{12}=-\vec{F}_{21} \\
\vec{F}_{G}=m \vec{g} \\
F_{f r}=\mu F_{N} \\
a_{c}=\frac{v^{2}}{r}
\end{gathered}
$$

