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1 Electric Field

§ 1.1 Electric Charge
Sometimes when you pet a cat, the cat’s fur begins to stand up

on end and if you then touch the cats nose, you and the cat are both
shocked. Through petting, the cat has been charged with static elec-
tricity. The shock occurs when the cat discharges the built up static
charge to your finger. She has not done this on purpose, it is simply
the inevitable force of nature taking its course, so don’t get mad at the
cat. Of course if you had not touched the cat’s nose she would have lost
her charge more gradually through the air, so she might have reason to
be mad at you for sucking all the charge from her nose.

Let’s investigate static electricity further.

D
e
m

o Static Electricity: Rub a rubber rod with fur and hang it by a string.
Rub a second rubber rod with fur and bring it near the first:

Rubber Rods rubbed with fur

Observe that the charge rods repel one another. Thus, for two rods
of the same material rubbed in the same way we find there will be
a repulsive force between them. Remove the second rubber rod, and
replace it with a plexiglass rod that has been rubbed with the fur.
Observe that the hanging rubber rod is attracted to the plexiglass rod.
So it is possible by rubbing different objects with fur to cause either
attractive or repulsive forces between the objects.

The observations above can be explained by the existence of two
types of “electric charge.” Objects with the same charge repel each
other, while objects with different charges attract one another. The
two types of charge, following the convention of Benjamin Franklin,
are called positive and negative. Rubbing rubber with fur leaves the
rubber with a negative charge, while rubbing plexiglass with fur leaves
the plexiglass with a positive charge.
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Fact: Two Types of Charge
From observations, such as the demonstration with the rubber rods
and fur, we have the following rules:
• There are two types of electric charge: + and -.
• Objects with the same sign charge repel.
• Object with oppositely signed charges attract

� Do This Now 1.1

Your friend Albert claims that he has isolated a third type of electric charge

in nature. He calls the three types of charge A, B and C. Explain how he

would prove this to you. Hint: you might think about the rock-paper-scissors

game, and make a table showing which pairs are attractive and which are

repulsive.

Does the fur rubbing against the rubber (plexiglass) create the
negative (positive) electric charge? It turns out that the answer is
no. Careful experiments show that whenever a negative electric charge
shows up an equal amount of positive charge will be found somewhere
else, and vice versa. The net charge in the universe remains zero. To
see this for the rod-fur case, consider the following. Charge a rubber
rod with fur, hang the rod and then bring the fur near the rod. The
negatively charged rod will be attracted to the fur, showing that the
fur has gained a positive charge. We can understand what is going
on by considering the fundamental building blocks of normal matter:
protons, neutrons and electrons. Protons have a positive charge +e,
neutrons have no charge, and electrons have a negative charge −e.
Uncharged objects contains an equal number of electrons and protons.
A net electric charge is usually established on an object by adding
or removing electrons. In the case of the fur and rod, electrons are
removed form the fur and collected by the rod. This leaves the fur
with a net positive charge (more protons than electrons) and the rod
with a net negative charge (more electrons than protons).

� Do This Now 1.2

Explain why the cat’s fur stands on end when it is pet.

Fact: Electric Charge
Electric Charge is neither created nor destroyed.

D
e
m

o Charging Without Rubbing: Hang two small metal balls as indicated
below:
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Then charge a rubber rod with fur, place it in contact with the metal
balls, and then remove it. The two balls will be observed to repel each
other.

Here is how we can explain the demonstration. When the rubber rod
comes in contact with the metal, some of the charge (which is negative
since it is from a rubber rod rubbed with fur) moves over to the metal.
This is because metals easily accept or give up electric charge; electric
charge moves easily through metals. If we indicate the charges using
negative signs, then we can represent what happens with the following
picture:

--
- -

-
-

-

- - -
-
-----

-

-
- -

-
-

-

-
- -

-
-

The charges move from the rubber rod onto the metal balls because
of the repulsive forces between them. Once isolated, the two metal
spheres repel each other because they both have a net charge of the
same sign.

E
x
a
m

p
l
e Two equal masses, each with mass m = 4g, are electrically charged

and hung using string as shown. If the masses hang in equilibrium at
an angle θ = 10◦, what is the magnitude of the electric force that each
mass exerts on the other?
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θ

First draw a free body diagram for one of the masses:

θ
2

FE

mg

FT

Sum forces:∑
~F = ı̂(FT sin

θ

2
− FE) + ̂(FT cos

θ

2
−mg) = 0

This gives two equations:

FE = FT sin
θ

2

FT cos
θ

2
= mg

Solving for the electric force FE gives

FE = mg tan
θ

2
= (.004kg)(9.8 m

s2 ) tan(5◦) = 3.4mN

D
e
m

o Moving Charges: Place an aluminum can on a table. Perviously we
showed that we had two types or charge. If we produce either of these
types of charge the can is attracted toward the charge.

--
- -

-
-

-
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How can we understand this apparently new type of charge, a
charge that is attracted to both positive and negative charges? The
place to start is consider the aluminum of which the can is composed.
Each aluminum atom is composed of an equal number of protons and
electrons, so the net charge of the can is zero. But there is a difference
between the protons and electrons. The aluminum atoms are locked
together in a crystal lattice, with the protons locked together with the
neutrons in the nucleus of the atoms. The protons cannot move. On the
other hand some of the electrons are shared between all of the atoms,
and move around freely. This is what makes aluminum a conductor, it
has electrons that move freely through the bulk of the material.

So when a positively charged rod is brought near the can the elec-
trons are attracted toward the oppositely charged rod and the move
within the metal a little bit toward the rod. This leaves the can with a
net negative charge on the side toward the rod and a net positive charge
on the side away from the rod. The net positive charge is because the
protons did not move, so that when the electrons moved toward the
other side of the can, the protons were left alone, unpaired.

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

+

+

+

+
+

+

+

+ -

-

-

-

-

-

-

-

-

-

-

- -

-

-

-

-

-

-

-

-

-

-

-

can alone

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

+

+

+

+
+

+

+

+
--

-

-
-

- -
-
-

-
--

- - -

-
-

--
-

-

- - -

+ ++ +can next to
+ rod

-+ + ++ +showing
net charge

One might think that the net force would still be zero once the electrons
have redistributed themselves, since we end up with a net positive
charge on one side that is repelled and a net negative charge on the
other side that is attracted. But it ends up that the force between two
charges decreases with distance, so that the repulsive force is less than
the attractive force.

� Do This Now 1.3

Explain how a negatively charged rod also attracts the can.

§ 1.2 Coulomb’s Law
As we have seen there is a force between charged objects. Af-

ter careful observation it was determined that the electrical force is
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similar to the gravitational force. Recall that the gravitational force
between two massive objects is inversely proportional to the square of
the distance between the objects and proportional to the weight of each
object. The electric force between two charged objects is also inversely
proportional to the square of the distance between the objects and is
proportional to the charge on each object. This observational fact is
referred to as Coulomb’s Law.

Fact: Coulomb’s Law
The magnitude of the force between charges qa and qb that are a
distance r apart is given by

F =
qaqb
4πεo

1
r2

where 1
4πεo

= 8.987552× 109N ·m2/C2 ≈ 9.0× 109N ·m2/C2.

It has already been noted that the direction of the
electric force is determined by the sign of the charges:
opposites charges attract, like charges repel.

Fact: Coulomb’s Law in Vector Form
The magnitude and direction of the electric force can be combined
into one vector expression of Coulomb’s Law as follows:

~Fab =
qaqb
4πε0

~ra − ~rb
|~ra − ~rb|3

where ~Fab is the force on charge a due to charge b and ~ra and ~rb
are the position vectors of the two charges. Note that if we let
~r = ~ra − ~rb that we can write

~Fab =
qaqb
4πε0

1
r2
r̂

The vectors in the above definition are pictured below.

ra
a

brb

rab

Both vectors are from the origin of the coordinate system, which can
be chosen for computational convenience.
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E
x
a
m

p
l
e Consider three charges as shown. We want to know the net force on

charge a due to charges b and c.

rc

ra

rb4.0 mC 2.0 nC

-3.0 nC

0.2 0.4 0.6 0.8 1.00.0
0.0

0.2

0.4

x (m)

y (m)

We find from the diagram that
~ra = (0.2ı̂+ 0.4̂)m and qa = 4.0× 10−3C

~rb = (0.8ı̂+ 0.5̂)m and qb = 2.0× 10−9C

~rc = (0.7ı̂+ 0.2̂)m and qc = −3.0× 10−9C
so that we can compute

~ra − ~rb = (−0.6ı̂− 0.1̂)m and qaqb = 8.0× 10−12C2

~ra − ~rc = (−0.5ı̂+ 0.2̂)m and qaqc = −12.0× 10−12C2

so that
~Fa = ~Fab + ~Fac

=
qaqb
4πε0

~ra − ~rb
|~ra − ~rb|3

+
qaqc
4πε0

~ra − ~rc
|~ra − ~rc|3

= 0.072N
−0.6ı̂− 0.1̂
| − 0.6ı̂− 0.1̂|3

− 0.108N
−0.5ı̂+ 0.2̂
| − 0.5ı̂+ 0.2̂|3

= 0.072N
−0.6ı̂− 0.1̂

(0.62 + 0.12)3/2
− 0.108N

−0.5ı̂+ 0.2̂
(0.52 + 0.22)3/2

= 0.32N(−0.6ı̂− 0.1̂)− 0.69N(−0.5ı̂+ 0.2̂)
= (0.15ı̂− 0.17̂)N

The net force is to the right and down at about a 45◦.

If we reworked the previous example but with the charge qa dou-
bled, then we would find that the force on the charge qa would also be
doubled, ~Fa = 2(0.15ı̂ − 0.17̂)N. In general the force on a charge is
proportional to the charge. For example, in the previous example

~Fa = qa(37.5 ı̂− 42.5 ̂)
N
C
.

So we find that the ratio of the force and charge is a constant.
~Fa
qa

= (37.5 ı̂− 42.5 ̂)
N
C
.
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This observation leads to the definition of the electric field, which occurs
in the next section.

When computing the net electric force it is sometimes easier to
deal with the directions “by hand”. If you can tell the direction of the
force simply by looking at the configuration, then there is no reason to
use the vector form of Coulmb’s law. In such a situation just use the
magnitude form F = qaqb

4πεo
1
r2 . The following example will demonstrate

the “by hand” method.

E
x
a
m

p
l
e There are three equal charges q at each vertex of an equilateral triangle

with sides of length L. What is the force on each charge?

Let us find the force on the charge at the top. We know that the forces
are repulsive so that we can draw the free body diagram for the charge
on the top.

F1 F2

F2

F1
Fnet

By inspection we see that the two forces are both at a 30◦ angle from
the vertical, and that the horizontal components of the two forces are
equal and opposite. So that when we add the two forces together, to
get the net force, the horizontal components will cancel. The net force
will be just the sum of the vertical components.

~Fnet = F1y ̂+ F2y ̂ = F1 cos 30◦̂+ F2 cos 30◦̂

=
q2

4πε0
1
L2

cos 30◦̂+
q2

4πε0
1
L2

cos 30◦̂

= 2
q2

4πε0
1
L2

cos 30◦̂

By the symmetry of the configuration the force on the other two charges
will be the same magnitude and also pointing directly away from the
center of the group.

. Problem 1.1

There are two +q charges and two −q charges on the corners of a square
of size a as shown.
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+ -

+-
a

Compute the net force on each charge?

. Problem 1.2

You have three charges as shown.

1.0 µC

0.2 0.4 0.6 0.8 1.0

- 0.3

- 0.1

0.1

x (m)

y (m)

-2.0 µC

3.0 µC

0.2

0.0

- 0.2

What is the net force on each charge?

§ 1.3 Electric Field

Definition: Electric Field
If a particle with charge qa is placed at a point in space and Fa is
the net electric force on this particle due to all other charges, then
the electric field at that point in space is the ratio of the force on
the particle and the charge of the particle.

~E =
~Fa
qa

You can think of the electric field as the force per charge in the
same way that pressure is the force per area. It is important to under-
stand the following points about the electric field:
• The electric field does not depend on the test charge qa in any way.
• The electric field represents the effect of all the other charges.
• The electric field is different at each point in space.

We will now work a specific example in order to demonstrate these
three properties of the electric field. It is important to follow the details
of the computation in this example very closely since there is much to
learn from it. Consider the configuration of two charges shown below.
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rc

ra

rb
2.0 nC

-3.0 nC

0.2 0.4 0.6 0.8 1.00.0
0.0

0.2

0.4

x (m)

y (m)

We calculated this configuration in a previous example where the test
charge qa was at the point ~ra = (0.2ı̂ + 0.4̂)m and we found that the
force at this point was

~Fa = qa(37.5 ı̂− 42.5 ̂)
N
C

so that the electric field at this point is

~E(0.2m, 0.4m) =
~Fa
qa

= (37.5 ı̂− 42.5 ̂)
N
C

We can find the electric field at other points ~ra as well.

~E(~ra) =
~Fa
qa

=
~Fab
qa

+
~Fac
qa

=
qb

4πε0
~ra − ~rb
|~ra − ~rb|3

+
qc

4πε0
~ra − ~rc
|~ra − ~rc|3

We will stop at this point to notice that the charge qa has already
dropped out of the equation. So that we can write the electric field at
an arbitrary location ~r as

~E(~r) =
qb

4πε0
~r − ~rb
|~r − ~rb|3

+
qc

4πε0
~r − ~rc
|~r − ~rc|3

This observation will be used after this example is finished. Let us now
find the electric field at various other points. Let ~r = xı̂ + ŷ so that
the electric field at ~r is

~E(x, y) =
qb

4πε0
~r − ~rb
|~r − ~rb|3

+
qc

4πε0
~r − ~rc
|~r − ~rc|3

= 18N
C

(x− 0.8)̂ı+ (y − 0.5)̂
[(x− 0.8)2 + (y − 0.5)2]3/2

− 27N
C

(x− 0.7)̂ı+ (y − 0.2)̂
[(x− 0.7)2 + (y − 0.2)2]3/2

Evaluating this at a few locations we find the following.
~E(0, 0.4) = (22ı̂− 17̂)N

C

~E(0, 0.3) = (28ı̂− 14̂)N
C

~E(0, 0.2) = (32ı̂− 9̂)N
C

~E(0, 0.1) = (33ı̂− 2̂)N
C

~E(0, 0.0) = (32ı̂+ 3̂)N
C

~E(0,−0.1) = (28ı̂+ 8̂)N
C

The fields at these six points are graphed as the six bold arrows on
the left side of the following plot. The field is graphed at many other
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points a well.

+2

-3

This graph gives some idea of how the field changes as you move around

in the space. The graph is a little confusing in the region where the

arrows cross each other. This happens wherever the field is strong.

Because of this there is another kind of graph that is usually used to

map out the electric field. Take a look at the following graph, which

has both styles of maps together.
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+2

-3

The second style has curved field lines that follow the direction of the
electric field. Check to see that the arrows are parallel to the field lines
at the base of the arrow. This type of graph clearly shows the direction
of the field. You can get an idea of the magnitude of the field by how
close the field lines are to each other: the field is strong where the field
lines are close together. Here is a graph showing just the field lines.
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Look back now to the middle of the example, where we observed
that in the calculation of the electric field the test charge qa had
dropped out of the equation. We observed, at that time, that the
electric field at any location ~r in space could be written out as

~E(~r) =
qb

4πε0
~r − ~rb
|~r − ~rb|3

+
qc

4πε0
~r − ~rc
|~r − ~rc|3

We see the contribution of each source charge is of the form qs

4πε0
~r−~rs

|~r−~rs|3
and that the net field is the sum of the contributions of each source
charge. This is so because the net force is the vector sum of the individ-
ual force. Following this idea we would arrive at these two theorems.

Theorem: Electric Field due to a Point Charge
The electric field at the location ~r due to a point charge qs at the
location ~rs is given by the following expression.

~E(~r) =
qs

4πε0
~r − ~rs
|~r − ~rs|3

The magnitude of the electric field due to a point charge at a
distance r from the point charge is

E(r) =
q

4πε0
1
r2

Theorem: Superposition Theorem
The electric field due to a collection of point charges is the sum of
the fields of the individual charges.

~E(~r) =
∑
n

qn
4πε0

~r − ~rn
|~r − ~rn|3

. Problem 1.3

A charge q1 = +q is placed at the location ~r1 = 0ı̂ + â and a second
charge q2 = −q is placed at ~r2 = 0ı̂− â.
(a) Write out the electric field at an arbitrary location on the x-axis:
~r = xı̂+ 0̂.
(b) Sketch a map of the electric field lines, in the first quadrant. Here
is a table that gives the angle ( from the positive x-axis) of the electric
field at different locations in the first quadrant.
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x/a = 0.0 0.5 1.0 1.5 2.0 2.5 3.0
y/a = 0.0 -90 -90 -90 -90 -90 -90 -90

0.5 -90 -54 -48 -52 -57 -61 -65
1.0 45 -3 -11 -20 -29 -36 -42
1.5 90 42 19 5 -7 -16 -23
2.0 90 61 39 23 11 1 -8
2.5 90 69 51 36 24 13 5
3.0 90 74 58 45 33 24 15

§ 1.4 Vector and Scalar Fields

Definition: Scalar Field
A scalar field is an entity that has a magnitude at each point in
space.

The potential energy is a scalar field, the quantity U = mgy gives
the amount of potential energy at each point (~r = xı̂+ŷ) in space.

Definition: Vector Field
A vector field is an entity that has a magnitude and direction at
each point in space.

Gravity is a vector field, the constant g = 9.8 m
s2 is the magnitude

of the field near the surface of the earth, and the direction is toward the
earth. If you move away from the surface of the earth the gravitational
field decreases in strength. The gravitational field is similar to the
electric field in the sense that they both give the force on a body. The
gravitational field gives the force on a massive body.

~FG = m~g

While, the electric field gives the force on a charged body.
~FE = q ~E

Definition: Uniform Field
A uniform vector field is a vector field that has the same magnitude
and direction at all points in space. A uniform scalar field is a
scalar field that has the same value at all points in space.
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§ 1.5 Continuous Charge Distributions

In principle one could compute the electric field in any situation
by summing the fields of each proton and electron in the system. In
practice this is not done because there are too many electrons and
protons. In this section we will see how to compute the electric field
when there are too many charges to count.

Suppose that we have a string that has been rubbed on a cat until
the string has built up a charge Q that is spread uniformly over the
length of the string. We then take the string and stretch it out in a
straight line. We wish to calculate the electric field due to the string.
For convenience assume that the string is stretched out along the x-axis
from x = −L/2 to x = L/2.

One way of finding the electric field is to conceptually break the
string into short little sections, say N of them. Each of the sections
will be a length dx = L/N , and carry a charge dq = Q/N . We can
number the sections from 1 to N , and then the n’th section will be
at the position ~rn = xn ı̂ (xn = nL/N − L/2). As long as we break
the string into enough sections so that dx is small, we can treat each
section as a point charge and then we can compute the electric field as
a sum of N point charges

~E(~r) =
∑
n

qn
4πε0

~r − ~rn
|~r − ~rn|3

=
∑
n

dq

4πε0
~r − ~rn
|~r − ~rn|3

Keep in mind when you look at this formula that the vector ~rn points
to the charge qn. With this formula and the aid of a computer it
is possible to compute the electric field for nearly any distribution of
charge that you can imagine.

It is also possible, in some cases, to find a closed form solution,
without using a computer. If we take the limit as N goes to infinity,
the sum becomes an integral and the electric field can be written in the
form

~E(~r) =
∫

dq

4πε0
~r − ~rs
|~r − ~rs|3

Here again we imagine that we break the object into many small pieces
of charge dq, the vector ~rs points toward dq, ranging over all dq’s and
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that we “sum” over all the pieces.

Let us evaluate this integral for the case of the string that we
introduced earlier. First we need to relate dq to dx. The entire length
L of the string has a charge Q so that the charge per length is λ = Q/L.
If the charge is uniformly spread over the string we expect the charge
per length to be the same everywhere so that

dq

dx
=
Q

L
= λ −→ dq = λdx

With this, and the fact that ~rs = xs ı̂, we can write

~E(~r) =
∫

dq

4πε0
~r − ~rs
|~r − ~rs|3

=
∫ L/2

−L/2

λdxs
4πε0

~r − xs ı̂
|~r − xs ı̂|3

If we write the field point as ~r = xı̂+ ŷ, and then do the integration,
we find that

~E(x, y) =
λ

4πε0

 1√
y2 + (x− L

2 )2
− 1√

y2 + (x+ L
2 )2

 ı̂
+

λ

4πε0
1
y

− x− L
2√

y2 + (x− L
2 )2

+
x+ L

2√
y2 + (x+ L

2 )2

 ̂

. Problem 1.4

Suppose that you have a circular hoop of radius R with a net charge
Q spread uniform around the hoop. Compute the electric field at a
distance z along the axis of the hoop?
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§ 1.6 Gauss’s Law

We have seen that the electric field due to any charge distribution
can be computed. From this relationship between the electric field and
the charge distribution, another one can be derived.

First we will define a new quantity, the electric flux through a
surface. To get an idea of what the flux represents first consider the
following story. You wish to catch some butterflies but you don’t have
time to chase them around, so you just set up your butterfly net on
a pole. The butterflies are migrating south for the winter. They are
flying by your house heading in a southerly direction, so you orient the
net so that it faces north. The number of butterflies you catch should
be proportional to both the density of butterflies in the air and the
area of the mouth of the net. The number of butterflies caught will
also depend on the orientation of the net relative to the direction the
butterflies are moving. For example, if the butterflies end up flying to
the south-west instead of directly south, you will not catch as many
since the net was not facing the optimal direction.

The electric flux is similar, it is the amount of electric field that
“passes through” a surface. There are three things that determine the
quantity of electric flux: the area of the surface, the magnitude of the
electric field and the orientation of the field relative to the surface.
To write this out clearly, we need to have a way to mathematically
represent the orientation of a surface. We will define a vector area ~A
as the vector that has a magnitude equal to the area of the surface and
has a direction that is normal to the surface. A good picture to keep
in mind is a thumbtack,

A
A

the nail part of the tack is the vector area and the flat part of the
tack is the surface. This ends up being the best way to use a vector to
represent a surface. Now we can define the electric flux.
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Definition: Electric Flux
The electric flux (φe) through a surface is

φe = ~E · ~A
if the field is uniform over the surface. If the field is not uniform
then one must integrate over the surface,

φe =
∫

~E · ~dA

We see that the dot product represents the dependence of the flux
on the relative orientation of the surface and the field. When thinking
of the flux integral over a surface it can be helpful to imagine gluing
tacks to the surface with the nail part sticking out, so that you end up
with a spiky covering of the surface. Each tack represents one small
surface element ~dA and the integral is the sum of the flux’s through all
of the small surface element.

Now we can state the theorem that relates the electric field to the
charge density.

Theorem: Gauss’s Law
The electric flux out of any closed surface is proportional to the
total charge enclosed within the surface.∮

~E · ~dA =
Qin

ε0

Note that the integral of the electric field over the surface does
not depend on the charge density outside the surface in any way. For
example if there is no charge inside the surface then the integral must
be zero.

E
x
a
m

p
l
e We can use Gauss’s law in order to find the electric field strength.

Here is an example of how this can be done. The result of this example
is also generally useful.
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Suppose that you have a block of material which has charges inside
that move freely. We will show later that in side the block the electric
field is zero and that outside but near the block the field is normal to
the surface. Also we will see later that there is no net charge inside the
block, but that on the surface there can be a surface charge density.
Let us form a Gaussian surface in the shape of a small tin can that is
half inside and half outside the material, with the can oriented so that
the ends of the can are parallel to the surface of the material.

Since the field is zero inside the material we know that the flux is zero
through the half of the can that is inside the material. We also know
that the flux is zero through the sides of the can because the field is
normal to the surface of the material. So we see that the only flux
through the surface of the can is the flux through the top of the can.
Assuming that the can is small enough so that the field is uniform over
the can, then the flux through the top is∫

top

~E · ~dA = ~E · ~A = EA

where A is the cross sectional area of the can. We have now computed
the left hand side of Gauss’s law. The right hand side is the charge
inside the gaussian surface. Since the charge is only on the surface we
can find the charge inside the can as the area of the surface that is
inside the can A times the surface charge density σ: so Qin = Aσ. And∮

~E · ~dA =
Qin

ε0∫
bottom

~E · ~dA+
∫

sides

~E · ~dA+
∫

top

~E · ~dA =
Qin

ε0

−→ 0 + 0 + EA =
Aσ

ε0
−→ E =

σ

ε0

In the previous example, the determination of the flux was greatly



24 Electric Field 1.6

simplified because we picked a the gaussian surface so that the electric
field was either normal to the surface or in the plane of the surface.
For example, the field was in the plane of the sides of the can in the
previous example, thus the flux was zero through the sides. Further,
in the previous example, the electric field was normal to the part of
the gaussian surface that did not have a zero flux, in addition the field
strength was uniform over this part of the surface. Thus the first thing
to do, when you are using Gauss’s law to find the electric field strength,
is to choose the gaussian surface so that the field is either parallel or
normal to all parts of the surface.

. Problem 1.5

Four closed surfaces are near three charges as shown.

-Q

+Q

-2Q
S1

S2

S3
S4

Find the electric flux through each surface.

. Problem 1.6

A charge q is placed at one corner of a cube. What is the electric flux
through each face of the cube.

. Problem 1.7

Use Gauss’s law to show that the field strength at a distance r from a
point charge is q

4πε0
1
r2 .

. Problem 1.8

A solid sphere of radius R has a total charge of Q uniformly distributed
throughout its volume. Calculate the magnitude of the electric field at
a distance r from the center of the sphere. Be sure to consider the cases
of r < R and r > R separately.

. Problem 1.9

A sphere of radius a carries a volume charge density ρ = ρ0(r/a)2.
Find the electric field inside and outside the sphere.

. Problem 1.10

Use Gauss’s law to show that the electric field near a line charge with
uniform charge density λ is given by E = λ

2πε0r
where r is the distance

from the line.
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. Problem 1.11

Consider a long cylindrical charge distribution of radius R with a uni-
form charge density ρ. Find the electric field at a distance r from the
axis for r < R.

. Problem 1.12

A spherical shell of radius R carries a net charge of Q uniformly dis-
tributed over it’s surface.
(a) Find the electric field strength at a point inside the shell.
(b) Find the electric field strength at a point outside the shell.

§ 1.7 More Examples

E
x
a
m

p
l
e Return to the pithballs in the example in section 1: assume the length

of each string is 10cm. If the masses have the same net electric charge,
what is the magnitude of the charge on each mass? Can you determine
the sign of the net charge on each ball?
Use the following diagram to determine the distances between the
masses:

θ/2
L = 10cmL

d

d = 2L sin
θ

2
= 2(10cm) sin 5◦ = 1.7cm.

Assume each mass has a charge q, then using Coulomb’s law:

FE =
1

4πε0
q2

d2
−→ q2 =

FEd
2

1
4πε0

.

−→ q =

√
(0.0034N)(.017m)2

9× 109N ·m2/C2
= 1.0× 10−8C

The sign of the charge cannot be determined; all that can be said is
the net charge on the masses have the same sign.

E
x
a
m

p
l
e Three particles with electric charge are attached to a meter stick, as

shown. The value of Q is 1× 10−6C (= 1µC). (a) What is the electric
force on the center charge? (b) To what position could the center charge
be moved so that the net electric force on it is zero?
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+Q +2Q

0.5m

+3Q

(a) The electric forces on the center charge due to the other two charges
are:

Q 3QF2Q
F

The net force is

Fnet = F3Q − F2Q

=
1

4πε0
Q(3Q)
(0.5m)2

− 1
4πε0

Q(2Q)
(0.5m)2

=
(

9× 109 N·m2

C2

)
(1× 10−6C)2

(
3− 2

(0.5m)2

)
= +3.6mN

(b) There are three regions to consider: in between the 2Q and 3Q
charges, outside of these charges to the left and outside of these charges
to the right. Here are force diagrams for placing the charge Q outside
of the two larger charges:

+Q+2Q+3Q

3QF

2Q
F+Q

3QF

2Q
F

Since the forces point in the same direction, there is no location outside
of the two larger charges where the net electric force on the charge Q
can be zero. For positions inside the two larger charges, the forces will
point in opposite directions, as seen in part (a), and will cancel at the
position where the forces have equal magnitudes. Let’s measure the
location from the+3Q charge:

+2Q+3Q

3QF2QF

x

The net force on the charge +Q at a position x is
Fnet = F3Q − F2Q

=
1

4πε0
Q(3Q)
x2

− 1
4πε0

Q(2Q)
(1− x)2
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The net force is to be zero:
1

4πε0
Q(3Q)
x2

− 1
4πε0

Q(2Q)
(1− x)2

= 0

−→ 3(1− x)2 − 2x2 = 0

Solving the resulting quadratic equation yields two answers: x = 5.45m
and x = 0.55m. The latter value is the answer, since we already argued
that the position must lie between the two larger charges.

� Do This Now 1.4

Analyze the configuration in the previous example, except replace the +3Q
charge with a −3Q charge.

(a)−0.18N(b)4.45mtotherightofthe+2Qcharge.

E
x
a
m

p
l
e Four charges are located at the corners of a square as shown in the

diagram below. A fifth charge is located at the center of the square.
For the charge values indicated compute the net electric force on the
charge at the center of the square.

+4μC +1μC

+2μC-1μC

+4μC

25cm

Draw a force diagram:

F+4

45o

45o

+4μC +1μC

+2μC-1μC

F+1

F+2

F-1

y

x

The distances between each corner charge and the center charge are
the same:

d =

√(a
2

)2

+
(a

2

)2

=
√

2
2
a,
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where a = 25cm. To find the net force, add all the forces using vector
addition:

~Fnet = ı̂Fx + ̂Fy,

where
Fx = (F+4 − F+2 − F+1 − F−1) sin(45◦)
Fy = (−F+4 + F+2 − F+1 − F−1) cos(45◦)

Use Coulomb’s law to compute the magnitude of each force:

F+4 =
(9× 109)(4× 10−6)(4× 10−6)(√

2
2 (.25)

)2 = 4.6N

F+1 = F−1 =
(9× 109)(1× 10−6)(4× 10−6)(√

2
2 (.25)

)2 = 1.15N

F+2 =
(9× 109)(2× 10−6)(4× 10−6)(√

2
2 (.25)

)2 = 2.3N

Finally, compute the components of the net force:
Fx = (4.6N− 2.3N− 1.15N− 1.15N) sin(45◦) = 0
Fy = (−4.6N + 2.3N− 1.15N− 1.15N) cos(45◦) = −3.25N

So, the net force points straight down with a magnitude of 3.25N.

E
x
a
m

p
l
e Consider the configuration of three charges along a line as shown below.

Assuming the only forces acting are mutual electric forces between the
charges, show that the configuration is in equilibrium, meaning that
the net force on each charge is zero.

-q+4q +4q

a a

Here is a force diagram for all the charges:

-q+4q +4q

The net force on the center charge must be zero, since the two forces
are in opposite directions and caused by equal charges that are the
same distance away. One down, two to go. Use the force law to write
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out the net force on the leftmost charge:

FL =
1

4πε0
(4q)(q)
a2

− 1
4πε0

(4q)(4q)
(2a)2

=
1

4πε0
(4q)(q)
a2

− 1
4πε0

(4q)(q)
a2

= 0
So the net force on the leftmost charge is zero. Since the rightmost
charge is the mirror image of the leftmost charge, it also has no net
force acting on it. Thus, all three charges have a net force of zero acting
on them for the configuration given, and the system is in equilibrium.
Is the equilibrium stable?
By stability we mean the following. If we move one of the charges
a little bit, does the configuration return to the original equilibrium
configuration, or does the configuration fall apart? Let’s move one of
the charges a little bit and see what happens. Move the left most charge
a small distance ε to the left. If the configuration is stable, then the
net force on it must push it to the right. Check:

-q+4q +4q

ε

a+ε a

The net force is now:

F ′L =
1

4πε0
(4q)(q)
(a+ ε)2

− 1
4πε0

(4q)(4q)
(2a+ ε)2

If this force points to the right, it will push the charge back from
where it came and the equilibrium can be stable. If the force is to the
left, the charge will be pushed away from the equilibrium position and
the equilibrium can not be stable. With a little algebraic muscle the
formula above for F ′L can be rewritten:

F ′L =
q2

πε0a2

(
1

(1 + ε
a )2
− 1

(1 + ε
2a )2

)
It is easy to see that this is a negative number since the denominator
in the subtracted term is smallest, no matter how small ε is, as long
as it is larger than zero. Thus, the force on the leftmost charge points
to the left and the charge is pushed away from the original equilibrium
position. The equilibrium is unstable.

� Do This Now 1.5
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Determine what the other two charges in the previous example do when the

leftmost charge is moved to the left.

Theyacceleratetowardseachother

� Do This Now 1.6

An electron accelerates east due to an electric field. What direction does the

electric field point? west

E
x
a
m

p
l
e A dust particle with mass 2µg has a net electric charge 3µC. The

piece of dust is in a region of uniform electric field and is observed to
accelerate at a rate of 180 m

s2 . What is the magnitude of the electric
field in that region of space?
The net force on the dust particle can be computed using Newton’s
second law:

Fnet = (2× 10−9kg)(180 m
s2 ) = 3.6× 10−7N.

Using the definition of electric field and assuming no other forces act
on the dust particle:

E =
F

q
=

3.6× 10−7N
3× 10−6C

= 0.12
N

C
.

E
x
a
m

p
l
e If a proton is placed in the same electric field from the previous exam-

ple, what is the resulting acceleration?
Work backwards:

F = qE = (1.6× 10−19C)(0.12N/C) = 1.9× 10−20N

a =
F

m
=

1.9× 10−20N
1.67× 10−27kg

= 1.15× 107 m
s2

E
x
a
m

p
l
e Three charges lie along a line as shown below. What is the electric

field at a position that is a horizontal distance a to the right of the −q
charge?

a2a

-4q +2q -q

Here is a diagram indicating the electric field due to each charge at the
point:
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a

-4q +2q -q E-1

E-4
E+2

a2a

In the diagram, the electric field due to the −4q charge has been la-
beled E−4, etc. The electric field at the point indicated is just the
superposition of the individual electric fields:

E = E+2 − E−1 − E−4 =
1

4πε0
(2q)
(2a)2

− 1
4πε0

q

a2
− 1

4πε0
(4q)
(4a)2

−→ E = − 3
16πε0

q

a2
.

E
x
a
m

p
l
e Using the configuration of charges in the previous example, determine

the electric field a vertical distance a above the +2q charge.
First, let’s add a coordinate system, since this problem will involve
vectors in two dimensions:

-4q

y

+2q -q

E-1
E-4

E+2

(-2a, 0) (0, 0) (a, 0)
θ1 θ2 x

(0, a)

The angles θ1 and θ2 can be computed using some geometry:

cos θ1 =
2√
5

sin θ1 =
1√
5

cos θ2 =
1√
2

sin θ2 =
1√
2

To compute the electric field at the point (0, a), we add the individual
electric fields as vectors:
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E-4

E+2

E-1
θ1 θ2

~E = ı̂(−E−4 cos θ1 + E−1 cos θ2)
+ ̂(−E−4 sin θ1 − E−1 sin θ2 + E+2)

Use Coulomb’s law to compute the magnitudes of the electric field
contribution from each charge:

E−4 =
1

4πε0
(4q)

(
√

5a)2
=

1
4πε0

4q
5a2

E+2 =
1

4πε0
(2q)
a2

=
1

4πε0
2q
a2

E−1 =
1

4πε0
(q)

(
√

2a)2
=

1
4πε0

q

2a2

Finally,

~E = ı̂

(
− 1

4πε0
q

5a2

2√
5

+
1

4πε0
q

2a2

1√
2

)
+ ̂

(
− 1

4πε0
4q
5a2

1√
5
− 1

4πε0
q

2a2

1√
2

+
1

4πε0
2q
a2

)
−→ ~E =

1
4πε0

q

a2
(−ı̂(0.36) + ̂(1.29))

Flux example:

E
x
a
m

p
l
e A uniform electric field passes through a 1cm×1cm square in the xy

plane. The electric field is ~E = (5N
C )̂ı + (3N

C )k̂. What is the electric
flux through the square?

x 

y
z

Since the electric field is constant:

φE =
∫

~E · d ~A = ~E · ~A.
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The area vector points in the k̂ direction, so

φE =
(

(5N
C )̂ı+ (3N

C )k̂
)
· (0.01m)2k̂ = 0.03N·m2

C

Gauss’s Law Examples:

E
x
a
m

p
l
e A 1.5× 10−9C point charge is located at the center of a cylinder. The

electric flux through the sides of the cylinder is known to be 100N·m2

C .
What is the electric flux through one of the endcaps?

By Gauss’s law: ∮
~E · ~A =

Qin
ε0∫

sides

~E · ~A+
∫
caps

~E · ~A =
1.5× 10−9C

8.85× 10−12 C2

N·m2

100N·m2

C +
∫
caps

~E · ~A = 169N·m2

C

−→
∫
caps

~E · ~A = 169N·m2

C − 100N·m2

C = 69N·m2

C

This is the flux through both caps. Since the charge is located sym-
metrically with respect to the two endcaps, the flux through one cap is
just half this: 34.5N·m2

C .

E
x
a
m

p
l
e A large, thin rectangular plate has a uniform charge density σ dis-

tributed over its area:

σ

Assuming that the plate is so large that the electric field above and
below the plate is uniform, compute the magnitude of the electric field.
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With the assumptions above, symmetry tells us that the electric field
will point in a direction perpendicular to the surface; for a positive
charge it will point away from the plate:

σ

E

E
A

In the figure a Gaussian surface is indicated. Take it to be a small
cylinder with cross-sectional area A. The electric flux in non-zero only
through the endcaps:∮

~E · d ~A =
∫

upper cap

E · d ~A+
∫

sides

E · d ~A+
∫

lower cap

E · d ~A

= EA+ 0 + EA = 2EA
Using Gauss’s law:

2EA =
σA

ε0

−→ E =
σ

2ε0
.

§ 1.8 Homework

. Problem 1.13

y

x

0.50 m

0.50 m

0.50 m

7.0 µC

−4.0 µC2.0 µC

Three point charges are located at the corners of an equilateral triangle
as shown. Calculate the net electric force on the 7.0µC charge.
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. Problem 1.14

Richard Feynman said that if two people were at arm’s length from
each other and each person had 1% more electrons than protons, the
force of repulsion between them would be about equal to the “weight”
of the entire Earth. Was Feynman exaggerating?

. Problem 1.15

A point charge q is at the position (x0, y0). Find the electric field at
an arbitrary point (x, y) due to the charge q.

. Problem 1.16

Two 2.0 µC charges are located on the x axis at x = 1.0m and at
x = −1.0m.
(a) Determine the electric field on the y axis at y = 0.5.m.
(b) Calculate the electric force on a −3.0µC charged place at this point.

. Problem 1.17

A uniformly charged insulating rod of length 14 cm is bent into the
shape of a semicircle. If the rod has a total charge of −7.5µC, find
the magnitude and direction of the electric field at the center of the
semicircle.

. Problem 1.18

An electron moves at a speed of 3× 106 m
s into a uniform electric field

of magnitude 1000 N/C. The field is parallel to the electron’s velocity
and acts to decelerate the electron. How far does the electron travel
before it is brought to rest?

. Problem 1.19

A proton moves at 4.5 × 105 m
s in the horizontal direction. It enters a

uniform electric field of 9.6 × 103N/C directed downward. Ignore any
gravitational effects and find the time it takes the proton to travel 5.0
cm horizontally, its vertical displacement after it has traveled 5.0 cm
horizontally, and the horizontal and vertical components of its velocity
after it has traveled 5.0 cm horizontally.

. Problem 1.20

y

x

θ
E
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A charged ball of mass 1.00 g is suspended on a light string in the
presence of a uniform electric field as shown. When ~E = (3.00ı̂ +
5.00̂)× 105N/C, the ball is in equilibrium at θ = 37.0◦.
(a) Find the charge on the ball.
(b) Find the tension in the string.

. Problem 1.21

A triangular box is in a horizontal electric field of magnitude E =
7.8× 104N/C as shown

30 cm

10 cm 60°

E

(a) Compute the electric flux through each face of the box.
(b) Compute the net electric flux through the entire surface of the box.

. Problem 1.22

The nose cone of a rocket is in a uniform electric field of magnitude E0

as shown.
EE

d

It is parabolic in cross section, of length d and of radius r. Compute
the electric flux through the paraboloidal surface.

. Problem 1.23

A charge Q is at the center of a cube of side L.
(a) Find the flux through each face of the cube.
(b) Find the flux through the entire surface of the cube.
(c) Would these answers change if the charge was not at the center?

. Problem 1.24

A charge Q is located just above the center of the flat face of a solid
hemisphere of radius R.
(a) What is the electric flux through the curved surface.
(b) What is the electric flux through the flat surface.

. Problem 1.25

Find the electric field at the origin if there is a charged rod that goes
from x = a to x = b assuming that the charge density of the rod is
λ = cxn.



1.9 Summary 37

§ 1.9 Summary

Definitions

Electric Field:
~E =

~Fa
qa

Electric Flux:
dφe = ~E · ~dA

φe =
∫

~E · ~dA

Facts

Coulomb’s Law

~Fab =
1

4πε0
qaqb

r̂ab
r2
ab

=
1

4πε0
qaqb

~rab
r3
ab

Theorems

Electric Field of a Point Charge:

~E(~r) =
1

4πε0
q
~r − ~rs
|~r − ~rs|3

where ~r points to the field point and ~rs points to the charge q.
Electric Field of a Distribution of Charge:

~E(~r) =
1

4πε0

∫
dq

~r − ~rs
|~r − ~rs|3

where ~r points to the field point and ~rs points to the charge element
dq.

Gauss’ Law: ∮
~E · ~dA =

Qin

ε0

Superposition Theorem: If a charge distribution ρ1 produces an
electric field ~E1 and the charge distribution ρ2 produces an electric
field ~E2 then if both charge distributions are present the electric field
is ~E = ~E1 + ~E2.
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2 Electric Potential

§ 2.1 Electric Potential

The Coulomb force is a conservative force and thus we can consider
the potential energy of a particle in an electric field that is created by
a static charge distribution. Suppose that you have a charged particle
in an electric field, and that you move the particle from point A to
point B. As the particle is moved, the electric field will do work on the
particle.

WA→B =
∫ B

A

~FE · ~dr

=
∫ B

A

q ~E · ~dr

= q

∫ B

A

~E · ~dr

Thus when the particle is moved from A to B the change in the electric
potential energy is

∆U = −WA→B = −q
∫ B

A

~E · ~dr

and the change in potential energy per charge is
∆U
q

= −
∫ B

A

~E · ~dr.

Notice that the potential energy per charge does not depend on the
test charge q, it only depends on the electric field.

Definition: Electric Potential
The electric potential, V , is the electric potential energy per charge.
The electric potential is related to the electric field:

VB − VA = ∆V =
∆U
q

= −
∫ B

A

~E · ~dr

For a uniform electric field this simplifies to

∆V =
∆U
q

= − ~E ·∆~r
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It is important to notice that the definition of electric potential
only tells us how to find the difference (VB − VA) between the electric
potential at two different points, A and B . The value of the electric
potential itself is not defined. This is not a problem because only the
difference has physical significance. You may recall that this is true
for potential energy also. The potential energy at ten meters above
the surface of the earth is not defined, but the difference between the
potential energy at ten meters and three meters is defined, ∆U =
mg∆y. One can choose some point in space that is defined to be
the zero of the electric potential. This point is sometimes called the
ground. Then in reference to ground, all points have an absolute electric
potential. This is like choosing the surface of the earth as the zero of
gravitational potential energy.

Often the electric potential is simply referred to as the potential.
The units of electric potential is evidently the units of energy divided
by the units of charge. This unit occurs frequently and has it’s own
name, the Volt.

1Volt =
1Joule

1Coulomb

This unit is abbreviated as V. Be warned that this is a bad coincidence
since the symbol used for the electric potential is V , which is very
similar to V. This is not a serious problem, but if you mix up the
symbols, you can end up doing silly things with the algebra.

E
x
a
m

p
l
e Suppose that there is a uniform electric field ~E = (0.2N

C )̂ı. The electric
potential difference between the two points ~rA = (1.0m)̂ı+(2.0m)̂ and
~rB = (5.0m)̂ı+ (−3.0m)̂ is computed as follows.

VB − VA = ∆V = − ~E ·∆~r
= −(0.2N

C )̂ı · [~rB − ~rA]
= −(0.2N

C )̂ı · [(4.0m)̂ı+ (−5.0m)̂]
= −(0.2N

C )(4.0m) + 0 = −0.8V

This example demonstrates that the electric potential decreases as
one moves in the direction of the electric field (positive x in this case).
This is a general rule: the electric field points from regions of high
electric potential to regions of low electric potential.
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E
x
a
m

p
l
e Suppose that an electron moved from a region where the electric po-

tential is 150 volts to a region where the electric potential is 100 volts.
There is only the electric field acting on the electron. What would be
the change in the kinetic energy of the electron? We know that the
potential energy and electric potential are related: ∆V = ∆U/q.

∆K + ∆U = 0

so that

∆K = −∆U = −q∆V = −(−e)(100V − 150V) = −8.0× 10−18J

In this example we see that negatively charged particles slow down
when they go from a region of high electric potential to a region of low
electric potential. A positively charged particles would speed up.

E
x
a
m

p
l
e Now let’s try an example where the field is not uniform.

~E = α
[
y2 ı̂+ 2xŷ

]
If we move from the origin to the point (a, b) what is the change in the
electric potential. First we need to pick a path from the starting point
to the ending point. A straight line will do. Let ~r(t) = x(t)̂ı+ y(t)̂ =
at̂ı + bt̂, we see that as the parameter t is varied from 0 to 1, that
the vector ~r(t) points along the path from the origin to the final point
(a, b): that is ~r(t) is the trajectory of a particle following our path. This
function is called a parameterization of the path. Now we can compute
the line integral

∫
~E · ~dr since we can now write

~dr =
d~r

dt
dt =

[
dx

dt
ı̂+

dy

dt
̂

]
dt = [aı̂+ b̂] dt



42 Electric Potential 2.1

so that

∆V = −
∫ B

A

~E · ~dr

= −
∫ 1

0

~E(~r(t)) · d~r
dt
dt

= −
∫ 1

0

α
[
y2 ı̂+ 2xŷ

]
· [aı̂+ b̂] dt

= −α
∫ 1

0

[
(bt)2 ı̂+ 2(at)(bt)̂

]
· [aı̂+ b̂] dt

= −α
∫ 1

0

[
(bt)2a+ 2(at)(bt)b

]
dt

= −α
∫ 1

0

3ab2t2 dt

= −αab2

In general, to compute a line integral, one must first find a param-
eterization of the path.

The following theorem gives a way of finding the electric field if
the electric potential field is already know.

Theorem: Electric Field from the Electric Potential

~E = −~∇V = −
[
∂V

∂x
ı̂+

∂V

∂y
̂+

∂V

∂z
k̂

]

The symbol ~∇ represents the gradient operator ∂
∂x ı̂ + ∂

∂y ̂ + ∂
∂z k̂.

Thus the expression ~∇f is equal to ∂f
∂x ı̂+ ∂f

∂y ̂+ ∂f
∂z k̂.

E
x
a
m

p
l
e The nonuniform electric field, ~E = αy2 ı̂+ 2αxŷ, that we used in the

previous example, has the electric potential V = −αxy2. Let us check
the above theorem.

~E = −~∇V

=
∂

∂x
αxy2 ı̂+

∂

∂y
αxy2̂+

∂

∂z
αxy2k̂

= αy2 ı̂+ 2αxy ̂+ 0 k̂ OK
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. Problem 2.1

You touch the terminals of a 9 Volt battery to your tongue. While it is
touching your tongue a charge of 0.08 Coulombs passes through your
tongue from one terminal to the other. How much energy is dissipated
in your tongue, by the charged particles passing through it?

. Problem 2.2

Two metal plates are held at an electric potential difference of 1000V.
An electron is released from the plate that is at a lower electric po-
tential. What is the speed of the electron when it reaches the other
plate?

. Problem 2.3

The electric field in a region is given by ~E = ayı̂ + ax̂, where a =
2.0V/m2 is a constant. What is the electric potential difference between
the origin and the point x = 1.0m, y = 2.0m?

. Problem 2.4

The electric potential in a region is given by V = axyz. What is the
electric field?

§ 2.2 Equipotentials
Suppose that we have picked our zero for electric potential. Each

point in space will now have it’s own value for electric potential. If we
put a dot at every location that is at an electric potential of, say 4.3V,
then the collection of all such dots will create a surface.

Definition: Equipotential
An equipotential is a surface on which the electric potential is con-
stant.

Below is a graph of a few equipotentials for the electric field pro-
duced by three point charges (front left is q = +1, back center is q = +2,
and front right is q = −3).

These 3D plots are difficult to generate and read, so often a section
is cut through the surfaces, and only the cut edge of the surfaces are
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shown. The following graph is a section through the equipotentials for
the same three charges (there are a few more equipotentials drawn in
this section graph).

+1

+2

-3

Below is a graph of the same equipotentials with a few electric field
lines graphed also.

+1

+2

-3

Notice that while the field lines go from positive charges to negative
charges, the equipotentials encircle charges. Also notice that wherever
a field line crosses an equipoential, the field line is perpendicular to
the equipotential. This must happen, as we will now show. Imagine
that you move a charge a small distance ~dr along the surface of an
equipotential. The change in electric potential must be zero since the
beginning and ending points are both on the same equipotential. But
we also know that the change in electric potential is given by,

dV = − ~E · ~dr
So since dV = 0, it must be the case that ~E · ~dr = 0, and

~E · ~dr = 0 −→ ~E is perpendicular to ~dr

since ~E 6= 0 and ~dr 6= 0.
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. Problem 2.5

(a) Sketch the equipotentials for two like charges.
(b) Sketch the equipotentials for two opposite charges.

§ 2.3 Conductors in Equilibrium
A conductor allows it’s free charges to move through it with some

amount of ease. So, if there is a force acting on a free charge then that
charge will move. Thus if there is an electric field inside a conductor
then the free charges in the conductor will move. In some situations,
for example if the conductor is electrically insulated, the charges will
eventually reach an equilibrium configuration in which they no longer
move around. This makes sense, since if you apply a field to an isolated
conductor the charges will move around to adjust to the new force but in
the end they must settle down into the equilibrium configuration, which
is the state with the lowest energy. But this tells us something about
the electric field inside a conductor once it has reached equilibrium.
Since the charges are not moving, there can be no electric field inside
the conductor.

Theorem: Conductor in Equilibrium: Field
The electric field is zero inside a conductor at equilibrium.

This in turn tells us that there can be no net charge inside the
volume of a conductor if the conductor is in equilibrium. We can argue
this as follows. Suppose that there was a net charge in some volume
inside a conductor. By Gauss’s Law we know that there must be a
net electric flux through the surface of this volume, but the flux is the
integral of the electric field over the surface, so the electric field cannot
be zero if there is a region with a net charge. But by the previous
theorem we know that if there is an electric field inside a conductor then
the conductor is not in equilibrium. Thus there can be a net charge
inside a conductor only if the conductor is not at equilibrium.

Theorem: Conductor in Equilibrium: Charge
There is no net charge in any volume inside a conductor in equi-
librium. If a charge is placed on a conductor it will reside on the
surface of the conductor.

We can arrive at one more very important result by using the fact
that there is no field in a conductor in equilibrium. Since the field is
zero, this means that ∆V = −

∫
~E · ~dr = 0 for any path inside the

conductor. This tells us that a conductor in equilibrium is all at the
same electric potential.



46 Electric Potential 2.4

Theorem: Conductor in Equilibrium: Potential
All points in a conductor at equilibrium have the same electric
potential.

Theorem: Conductor in Equilibrium: Surface Field
The field at the outside surface of a conductor in equilibrium is
normal to the surface of the conductor. The magnitude of the
field is E = σ

ε0
where σ is the surface charge density.

We can see that the previous theorem must be true by considering
that the surface of the conductor is an equipotential, and noting that
the electric field is normal to any equipotential surface.

. Problem 2.6

There is a solid conductor with a cavity within it. Floating within this
cavity there is a second conductor. This has been drawn below with a
quarter of the outer conductor removed so that you can see the inner
conductor.

A total charge Qa is place on the inner conductor and a charge Qb is
placed on the outer conductor.
(a) What is the amount of charge on the inside surface of the outer
conductor?
(b) What is the amount of charge on the outer surface of the outer
conductor?

. Problem 2.7

A conducting spherical shell having an inner radius of 4.0 cm and outer
radius of 5.0 cm carries a net charge of +10µC. If a +2.0µC point charge
is placed a the center of this shell, determine the surface charge density
on the inner and outer surfaces.
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§ 2.4 Capacitors

Suppose that we place two conductors near each other. Now sup-
pose that we remove a quantity of charge Q from one conductor and
place it on the other. One conductor will end up with a charge +Q and
the other will end up with a charge −Q. In addition an electric field
will be created between the conductors.

Since there is an electric field between the conductors, there will also
be an electric potential difference between the two conductors.

∆V = V+ − V− = −
∫ ~r+

~r−

~E · ~dr

Because the electric field strength is proportional to the charge Q, the
electric potential difference will also be proportional to Q.

∆V ∝ Q

E
x
a
m

p
l
e Here is a specific example of this general result. Place two conducting

plates parallel to each other as shown, and charge the top plate to a
net charge Q and the other plate to a net charge −Q

In a previous example it was shown that the electric field strength near
a plate with uniform charge density σ is E = σ/2ε0. Between the
plates the fields of the two plates are in the same direction (toward
the negatively charged plate) so that the strength of the net field is
twice the field strength of each plate alone. So the net field between
the plates is E = σ/ε0. If the area of the plate is A then the charge
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density is σ = Q/A so that we find,

E =
Q

Aε0
As long as the separation between the plates d is much less than the
width of the plates the electric field will be effectively uniform between
the plates, so that the potential difference between the plates is

∆V = V+ − V− = − ~E ·∆~r
Since ∆~r points from the negative plate to the positive plate and ~E
points the opposite direction, the dot product of these two vectors is
negative the product of the magnitudes; ~E ·∆~r = −Ed.

∆V = −(−Ed) =
Q

Aε0
d =

d

Aε0
Q

We see then that the electric potential difference is proportional to the
charge on the plates.

Since the electric potential difference is proportional to the charge,
the ratio Q

∆V is a constant.

Definition: Capacitance
The capacitance, C, of two conductors is the ratio of the charge on
the conductors to the electric potential difference.

C =
Q

∆V
or Q = C ∆V

The unit of capacitance is a Farad and is equal to a Coulomb per
Volt: F = C

V .

. Problem 2.8

A 6.0µF capacitor is connected to a 1.5 Volt battery so that a electric
potential difference of 1.5 volts is maintained between the two conduc-
tors of the capacitor. What is the charge on each of the conductors?

. Problem 2.9

Show that the capacitance of two parallel plates is C = ε0A/d, where
d is the distance between the plates and A is the area of the plates.

. Problem 2.10

Show that the capacitance of two concentric spherical conducting shells
is 4πε0

1/a−1/b , where a and b are the radii of the shells.

. Problem 2.11

Coaxial cables are commonly used to carry high frequency signals. Your
cable for your cable-TV is a coaxial cable. A coaxial cable consists of
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a wire (radius a) surrounded by a cylindrical conducting shield (radius
b) Show that the capacitance for a length L of coaxial cable is 2πε0L

ln(b/a) .
. Problem 2.12

Consider two long, parallel, and oppositely charged wires of radius a
with their centers separated by a distance b. Assuming the charge
is distributed uniformly on the surface of each wire, show that the
capacitance per unit length of this pair of wires is

C

`
=

πεo

ln( ba − 1)

§ 2.5 Energy in an Electric Field
Let us consider how much work must be done to charge a capacitor.

Suppose that we have already moved an amount of charge q from the
negative plate to the positive plate of the capacitor, so that the electric
potential difference between the plates is ∆V = q/C. In order to move
a little bit more charge dq to the positive plate, we need to do an
amount of work

dW = dU = dq ∆V = dq
q

C

The total amount of work to bring the capacitor from a charge of q = 0
to a charge of q = Q is

U =
∫ Q

0

dq
q

C
=
Q2

2C
=

(C∆V )2

2C
= 1

2C(∆V )2

Theorem: Energy Stored in a Capacitor
A capacitor charged to an electric potential difference of VC stores
an amount of energy

U = 1
2CV

2
C

This energy is stored in the electric field that has been created
between the plates. The energy density (energy per volume) is

u =
energy
volume

=
1
2C(∆V )2

V
=

1
2
ε0A
d (Ed)2

A d
= 1

2ε0E
2

In the intermediate step in the above equation, the properties of a par-
allel plate capacitor was used, but the final result is true in general.

Theorem: Energy Density of an Electric Field
The electric field contains an amount of energy per volume u.

u = 1
2ε0E

2
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. Problem 2.13

A 120µF capacitor is charged to an electric potential difference of 100V.
(a) How much energy is stored in the capacitor?
(b) If the field strength in a capacitor becomes to great then the charge
will jump across the gap between the plates. Assume that this break
down occurs when the field strength reaches 3 × 106 V

m . What is the
minimum volume that is required for a 120µF capacitor to be able to
hold an electric potential difference of 100V?

§ 2.6 Electric Potential of a Point Charge
We wish to find the electric potential for a point charge. The

electric field strength around a point charge is

E =
q

4πε0
1
r2

where r is the distance from the point charge. The electric field is
either pointed away or toward the charge depending on if the charge is
positive or negative. Let us start with the positive charge.

Vb − Va = −
∫ rb

ra

~E · ~dr

If we let rb > ra then ~dr is pointed outward. This is the same direction
as ~E so that ~E · ~dr = E dr. Thus

Vb − Va = −
∫ rb

ra

E dr = − q

4πε0

∫ rb

ra

1
r2
dr = − q

4πε0

[
−1
r

]rb

ra

=
q

4πε0
1
rb
− q

4πε0
1
ra

Thus we see that the electric potential at a distance r from a point
charge is

V (r) =
q

4πε0
1
r

+ constant

For simplicity one normally chooses for the constant to be zero. Note
that this choice for the constant implies that the zero of the electric
potential is at the position r =∞.

Theorem: Electric Potential of a Point Charge

V (r) =
q

4πε0
1
r

. Problem 2.14

Show that V (r) = q
4πε0

1
r is correct for a negative charge as well.
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. Problem 2.15

An electron is released from a distance of 2.0 cm from a proton. How
fast will the electron be going when it is 0.5 cm from the proton?
(Assume that the proton does not move.)

§ 2.7 More Examples

E
x
a
m

p
l
e An electric field is given by ~E = (3 N

C·m2 )x2 ı̂). What is the electric
potential difference between the points (1m, 0, 0) and (3m, 0, 0)? What
is the minimum work needed to move a +6µC charge between the two
points, starting from (1m, 0, 0)?
Since the electric potential is path independent (it comes from a con-
servative force), we can integrate along any path we want; choose the
x-axis:

∆V = −
∫

~E · (̂ıdx) = −
3m∫

1m

(
3

N

C·m2

)
x2dx

−→ ∆V = −
(

3
N

C·m2

)[x3

3

]3

1

= −26
N·m

C
= −26V

The work done by an external agent will be
W = −WE = q∆V = (6× 10−6)(−26V) = −1.56× 10−4J

E
x
a
m

p
l
e The figure below is a schematic representation of an electron “gun.”

A potential difference is maintained between the left and right plates,
with the right plate having a higher potential. By heating the left
plate, an electron is “boiled” off the plate. The electron, starting from
rest, then moves toward the right plate, directed toward a small hole in
the plate so that it “shoots” out of the gun. If the potential difference
between the plates is 9V, how fast will the electron be moving when it
reaches the right plate?

ΔV

s = ?

- +
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The change in potential energy of the electron will be:
∆U = q∆V = (−e)∆V.

Use conservation of energy:
∆U + ∆K = −e∆V + ( 1

2mev
2 − 0) = 0

−→ v =
√

2e∆V
me

=

√
2(1.6× 10−19C(+9V)

9.11× 10−31kg

= 1.78× 106 m
s

E
x
a
m

p
l
e Near the surface of the Earth, there is always a background electric

field that averages 100N/C and points down. Assuming the Earth to be
a perfect conductor, how much electric charge is stored on the Earth’s
surface?
Since the electric field points down, we know the Earth’s charge is neg-
ative. So, lets find the magnitude. Use the previous result to determine
the surface charge density:

E =
σ

ε0
−→ σ = Eε0.

Multiply this by the Earth’s surface area to get the total charge:
QE = σ(4πR2

E) = Eε0(4πR2
E) = 453, 000C

E
x
a
m

p
l
e Two equal and opposite charges are located a distance a apart. Find

the electric field and the electric potential at a) the point directly be-
tween the two charges and b) the point a distance a/2 directly above
the point inbetween the two charges.

+q -q
a

The electric fields due to each charge point in the same direction at the
center point c:

+q -q

E+

E-
c
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The resulting electric field at c is
Ec = E+ + E−

=
1

4πε0
q

(a2 )2
+

1
4πε0

q

(a2 )2

=
2q

πε0a2

To find the potential we will have to come up with a rule for what to
do with more than a single point charge. As just illustrated, for the
electric field due to a system of charges, the resulting field at any point
is just the superposition of the electric fields due to all charges at that
point:

~E = ~E1 + ~E2 + ~E3 + · · ·

This followed because the electric field came from a net force. Likewise,
because the electric potential is defined using the electric field, at any
point in space we will just add up the potentials due to all the individual
charges to find the resulting potential:

V = V1 + V2 + V3 + · · ·
For our problem:

Vc = V+ + V−

=
1

4πε0
q

(a2 )
+

1
4πε0

(−q)
(a2 )

= 0
Now repeat the analysis for the second point, labeled d:

+q -q

E+

E-

d 45o

45o

a/2

a/2

a/2
x

y

The electric field is
~Ed = ı̂(E+ + E−) cos 45◦ + ̂(E+ − E−) sin 45◦

Compute the magnitudes of the individual fields:

E+ = E− =
1

4πε0
q

(
√

2
2 a)2

=
q

2πε0a2
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And,
~Ed = ı̂(2E+) + ̂(0)

Ed = 2
q

2πε0a2

√
2

2
=
√

2q
2πε0a2

The potential is:

Vd = V+ + V− =
1

4πε0

(
q

(
√

2
2 a)

+
(−q)

(
√

2
2 a)

)
= 0

The potential is zero at both points! The electric field is not zero, and
it points in the x direction at both points. You should be able to argue
for any point lying on the line defined by the points c and d that the
electric field always points in the x direction and the potential is always
zero.

� Do This Now 2.1

For the configuration in the previous example, compute the electric potential

at a point that is distance a above the +q charge.
q

8πε0a
(2−

√
2)

E
x
a
m

p
l
e A charge Q is distributed uniformly along a line L that lies along the

x-axis. Compute the electric potential a distance x from the left end
of the charge distribution that is on the x-axis. Take the potential at
∞ to be zero.
Locate the origin at the point we want to compute the electric potential
(labeled P ):

dx'P

x

x'

Consider the very small section of length dx′ of the line that is at x′.
The amount of charge contained in this small section is

dq′ =
Q

L
dx′.

Since the section is very small, we can treat it as a point charge and
the potential it causes at P is

dV ′ =
1

4πε0

Q
L dx

′

x′
,

where we have used the potential for a point charge, which takes the
potential at ∞ to be zero. To find the total electric potential at P we
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add up potential due to each small section making up the entire line:

V (x) =
∫
dV ′ =

x+L∫
x

1
4πε0

Q
L dx

′

x′

=
Q

4πε0L
ln
(
x+ L

x

)
Let’s check that this gives the expected result for L → 0, which will
result in Q being a point charge. We need the limit:

lim
L→0

ln
(
x+ L

x

)
= lim
L→0

ln
(

1 +
L

x

)
≈ L

x

So
lim
L→0

V (x) =
Q

4πε0L
· L
x

=
Q

4πε0x
,

which is indeed the electric potential a distance x from a point charge
Q.

§ 2.8 Homework

. Problem 2.16

Through what potential difference would an electron need to be accel-
erated for it to achieve a speed of 40% of the speed of light, starting
from rest?

. Problem 2.17

How much work is required to move one mole of electrons from a region
where the electric potential is 9V to a region where the electric potential
is -5V?

. Problem 2.18

An electron moving along the x axis has an initial speed of 2.7×106 m
s at

the origin. Its speed is reduced to 1.4× 105 m
s at the point x = 2.0cm.

Calculate the potential difference between the origin and this point.
Which point is at the higher potential?

. Problem 2.19

In Rutherford’s experiments alpha particles (charge +2e, mass 6.6 ×
10−27kg) were fired at a gold nucleus (charge +79e). An alpha particle
initially very far from the gold nucleus is fired at 2.0 × 107 m

s directly
toward the center of the nucleus. How close does the alpha particle get
to this center before turning around?

. Problem 2.20

Show that the amount of work required to assemble four identical
charges Q at the corners of a square of side s is 5.41kQ2/s.
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. Problem 2.21

In a certain region of space the electric potential is V = 5x−3x2y+2yz2.
Find the expressions for the x, y, and z components of the electric field
in this region. What is the magnitude of the field at the point P , which
has coordinates (1, 0,−2)m?

. Problem 2.22

A rod of length L lies along the x axis with its left end at the origin
and has a nonuniform charge density λ = αx. What are the units of
α? Calculate the electric potential at the point x = −b on the x axis.

. Problem 2.23

A wire that has a uniform linear charge density λ is bent into the shape
shown below. Find the electric potential at the center of the circular
part.

R2R 2R

. Problem 2.24

There is a point charge near by. You determine that the electric poten-
tial at your location (due to the point charge) is 3000V and the electric
field strength is 500 V

m .
(a) How far away is the charge?
(b) What is the value of the charge?

. Problem 2.25

Three charges are placed on the x-axis. Two charges Q at x = d and
x = −d, and a third charge −2Q at x = 0.
(a) Show that the electric potential along the x-axis is V = 2kQd2

x(x2−d2) .

(b) Show that the electric field along the x-axis is ~E = 2kQd2(3x2−d2)
x2(x2−d2)2 ı̂.

(c) In the limit that x� d, show that the field is proportional to 1/x4

and that the potential is proportional to 1/x3.

. Problem 2.26

You have drop of conductive fluid with a net charge of Q0 and a radius
r0. The electric field and electric potential at the surface of this drop
(due to the charge on the drop) are E0 and V0. Two such drops join
together to form a larger drop.
(a) What is the radius of the larger drop?
(b) What is the surface charge density of the larger drop?
(c) What is the electric field at the surface of the larger drop?
(d) What is the electric potential at the surface of the larger drop?
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. Problem 2.27

How much work is required to bring a total charge Q to a spherical
shell of radius R?

. Problem 2.28

You have two concentric spherical shells of radius a and b. The smaller
shell has a charge of q1 = 10nC and the larger shell has a charge of
q2 = −15nC.

a

b

(a) Find the electric field at all points in space.
(b) Find the electric potential at all points in space.
(c) Sketch the electric potential as a function of the distance from the
center of the shells, for a = 0.15m and b = 0.30m.

. Problem 2.29

Two conductors having net charges of +10.0µC and −10.0µC have a
potential difference of 10.0V. Determine the capacitance of the system
and the potential difference between the two conductors if the charges
on each are increased to +100.0µC and −100.0µC.

. Problem 2.30

Two conductors insulated from each other are charged by transferring
electrons from one conductor to the other. After 1.6 × 1012 electrons
have been transferred, the potential difference between the conductors
is 14V. What is the capacitance of the system?

. Problem 2.31

Einstein showed that energy is associated with mass according to the
famous relationship, E = mc2. Estimate the radius of an electron,
assuming that its charge is distributed uniformly over the surface of a
sphere of radius R and that the mass-energy of the electron is equal to
the total energy stored in the resulting nonzero electric field between
R and infinity.
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§ 2.9 Summary

Definitions

Electric Potential:
∆V =

∆U
q

Capacitance:

C =
Q

∆V
Equipotential: an equipotential is a surface over which the electric

potential is a constant.

Theorems

dV = − ~E · ~dr

∆V = −
∫ rf

ri

~E · ~dr

~E = −
[
∂V

∂x
î+

∂V

∂y
ĵ +

∂V

∂z
k̂

]
≡ −~∇V

Conductors in Equilibrium:
• Field - the field is zero in the volume of a conductor, and at the
surface it is normal to the surface.
• Charge - the net charge in the volume of a conductor is zero.
• Potential - the potential in the volume of a conductor is constant.

Electric Potential of a Point Charge:

V =
1

4πεo
q

r
Electric Potential of a Distributed Charge:

V (~r) =
1

4πεo

∫
dq

|~r − ~rs|
Energy Density of an Electric Field

E = 1
2εoE

2

Energy Stored on a Capacitor:
U = 1

2CV
2
C
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3 Circuits

§ 3.1 Introduction

When you turn on a flashlight, a flow of electrons is passed through
the light bulb. Inside the light bulb is a small filament. As the electrons
pass through the filament they loose energy and in the process the
filament heats up. The filament gets so hot that it glows, this is how
the bulb produces light.

The electrons are supplied from the negative terminal of the bat-
tery and flow to the light bulb through a metal wire. After the electrons
pass through the filament they are carried back to the positive terminal
of the battery by another wire.

A system of electrical devices connected with wires, such as the
flashlight system, is called an electric circuit. Circuits are often repre-
sented in a wiring diagram. The following circuit diagram represents
the flashlight system.

+

–

In this diagram there are three elements and the wires that connect
them. The element on the left is the battery, with the positive terminal
being wider and marked with a + sign. The element on the top is the
switch that turns the flashlight off and on. The element on the right is
the light bulb.

This chapter will be an investigation of electrical circuits and the
common electrical devices from which circuits are built.

§ 3.2 Electric Current

A flow of charge, such as the charge flowing through the light bulb
filament, is called an electric current.
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Definition: Current
The electric current, I, is defined to be the amount of charge that
flows per time.

I =
dq

dt

The unit of current is coulombs per second. This
combination of units is called the Ampere or Amp,
abbreviated as just A: (1A = 1C

1s ).

Definition: Current Density

Let A be a small area that is nor-
mal to the flow of current in a particu-
lar region. Let I be the current flowing
through the area A. The current density,
~J , is a vector in the direction of the flow
of current. The magnitude of the current
density is equal to the current per area.

J =
I

A

. Problem 3.1

A light bulb draws a current of 1.0 mA from a battery.
(a) How many electrons pass through the bulb in 160 seconds?
(b) The filament has a radius of 0.20 mm. What is the current density
through the filament?

§ 3.3 Ohm’s Law
When an electric field is applied to a conductor the free charges in

the conductor begin to move. If the conductor is isolated the charges
will distribute themselves so that the field inside the conductor is zero
and then the charges will cease to move. One the other hand, if the
conductor is not isolated but part of a circuit, as the filament was in
the flashlight circuit, then a continual flow of charge can be sustained,
and the electric field in the conductor will not be zero.
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Some materials, such a copper, allow charge to pass through it
with very little resistance, and therefore it takes very little electric field
to sustain a large current. Other materials, such a carbon, resist the
flow of charge, and it requires more electric field to sustain the same
current. Carbon is more resistive. This property is quantified in the
following law.

Fact: Ohm’s Law: Resistivity
For many materials the current density and the electric field are
proportional.

~J = σ ~E

The constant σ is called the conductivity and depends on the ma-
terial. The inverse of the conductivity is called the resistivity:
ρ = 1/σ.

Not all materials follow this relationship: those that do are called
ohmic materials, those that do not are called non-ohmic.

Here is a table with the resistivity of a few materials.
Material Resistivity(×10−8Ω ·m)
Silver 1.6
Copper 1.7
Aluminum 2.8
Tungsten 5.5
Iron 10
Nichrome 100
Carbon 3500
Silcon 64000000000
Wood 1000000000000000
Amber 50000000000000000000000

Imagine a piece of conductive material, with two terminals con-
nected to it, and with a current I passing into the material through
terminal a and draining out through terminal b. Such a circuit element
is called a Resistor.

In order to sustain this current there will need to be an electric field
in the conductor going from terminal a to terminal b. Thus there will
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be an electric potential difference ∆V = Va−Vb = −
∫ a
b
~E · ~dr between

the two terminals. It can be shown that, regardless of the shape of
the conductors, this electric potential difference is proportional to the
current if the material is ohmic.

Theorem: Ohm’s Law: Resistance

∆V = IR

Where R is called the resistance of the element.

The unit of resistance is the ohm which is one volts per amp. The
ohm is abbreviated as Ω, so that 1Ω = 1V/1A.

. Problem 3.2

You have a wire with cross sectional area A and length L. Show that if
the terminals are placed at the ends of this conductor that the resistance
of this element is R = ρLA .

. Problem 3.3

You have a block of carbon, with sides of length a, 2a, and 3a. If
terminals are placed on two parallel sides we can make a resistor with
this block. We have three choices for the placement of the terminals,
the sides that are a apart, 2a apart or 3a apart.
(a) Which choice will produce the most resistance.
(b) Which choice will produce the least resistance.

§ 3.4 Electric Power

Suppose that you have a circuit element with two terminals, that
has a current I running through it and a potential difference ∆V be-
tween the terminals. In a time dt an amount of charge dq = I dt will
pass through the element. All of that charge falls through the electric
potential difference of ∆V so that the charge dq looses an amount of
potential energy

dU = dq ∆V = I dt ∆V −→ dU

dt
= I ∆V.

So we see that the element dissipates a power P = I ∆V .

Theorem: Electrical Power
The power dissipated in a circuit element is equal to the product
of the current through the element and the potential difference
between the terminals of the element.

P = I ∆V
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. Problem 3.4

A 60 Watt light bulb is plugged into the wall receptacle which supplies
an electric potential of 120 Volts. How much current runs through the
bulb when you turn it on?

. Problem 3.5

(a) Show that a resistor with a current I running through it has a power
of P = I2R.
(b) Show that a resistor with a voltage ∆V across it has a power of
P = (∆V )2/R.

§ 3.5 Kirchhoff’s Rules

There are two theorems that are very useful in analysing a circuit.
The first theorem stems from the conservation of charge, that is, that
charge is neither created nor destroyed in a circuit. Consider a junction
where a number of elements come together.

Since the current does not build up at the junction the sum of current
going into the junction must be equal to the sum of the current going
out of the junction. In the case pictured above: I1 + I4 = I2 + I3.

Theorem: Kirchhoff’s Junction Rule
The sum of the currents into a junction is equal to the sum of the
current out of a junction.∑

Iin =
∑

Iout

The second theorem stems from the conservation
of energy. Since the electric potential is the potential
energy per charge that is due to the electric field in
the system, if a charge moves around a loop in a cir-
cuit and comes back to where it started it must be at
the same electric potential as when it started. Thus
if we add the electric potential differences of all the
elements that are crossed as you go around any loop
in the circuit the sum must be zero.



64 Circuits 3.6

Theorem: Kirchhoff’s Loop Rule
The sum of the electric potential differences around any closed
loop in a circuit is zero. ∑

∆V = 0

As an example consider the following circuit with five elements.
ΔV1 ΔV2

ΔV5

ΔV3 ΔV4

+ –+ –

+ –

+

–

+

–

There are a number of loop rules that we could write down. First,
consider the loop starting at the bottom left corner and then taking
the shortest route going clockwise back to the bottom left corner. You
cross elements 1 and 3, both time going from high to low potential.

−∆V1 −∆V3 = 0
Now the equation cannot be satisfied by positive numbers so one of the
∆V ’s must be negative. This is alright, the algebra will sort it out in
the end.

Now consider starting at the lower right corner and taking the
shortest clockwise loop. We pass through elements 5, 3, 2, and 4.

∆V5 + ∆V3 −∆V2 −∆V4 = 0
Notice which ones are positive and which are negative.

We could also do the big loop, starting at the lower left and going
clockwise through elements 1, 2, 4, and 5.

−∆V1 −∆V2 −∆V4 + ∆V5 = 0
It is important to notice that this last equation could have been

arrived at by combining the first two equations, so it has not really given
us any new information. In general it does not help to write down more
loop equations than there are “windows” in the circuit.

§ 3.6 Resistors in Combination

In a circuit where the same current runs through two resistors,
those resistors are said to be in series. If we a circuit where the same
electric potential is across two resistors, those resistors are said to be in
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parallel. The diagram below will help explain why these configurations
are named in this way.

Suppose that we have two resistors in series. Since they are in
series they must carry the same current.

I1 = I2 = I

We also know that the potential difference across the pair is the sum
of the potential differences across each individual resistor;

∆V = ∆V1 + ∆V2

= I1R1 + I2R2

= IR1 + IR2

= I(R1 +R2)
−→ Reffective = R1 +R2

We see that the pair of resistors in series still follow Ohm’s law, and
that the pair act as a single resistor with an effective resistance of
Reffective = R1 +R2.

ΔV1

ΔV2

ΔV I1 I2

I

Series Resistors Parallel Resistors
+

–

+

–

+

–

Now consider two resistors in parallel. Since they are in parallel
the must have the same electric potential.

∆V1 = ∆V2 = ∆V
We also know from the junction rule that the net current going into the
system is equal to the sum of the two currents going into the resistors.

I = I1 + I2 =
∆V1

R1
+

∆V2

R2
=

∆V
R1

+
∆V
R2

= ∆V
[

1
R1

+
1
R2

]
−→ 1

Reffective
=

1
R1

+
1
R2
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Theorem: Effective Resistance

Series R = R1 +R2

Parallel
1
R

=
1
R1

+
1
R2

§ 3.7 Capacitors in Combination
Capacitors in series and parallel can also be treated as a single

capacitor. The argument is much the same, but with charge rather
than current.

Suppose that you have two capacitors in series. Then the charges
on each must be the same.

Q1 = Q2 = Q

While the potential drop across the pair is the sum of the potential
drop across each

∆V = ∆V1 + ∆V2

=
Q1

C1
+
Q2

C2
=

Q

C1
+

Q

C2

−→ 1
C

=
∆V
Q

=
1
C1

+
1
C2

ΔV1

ΔV2

+Q1 +Q2

Series Capacitors Parallel Capacitors

+Q

-Q

+Q

-Q

-Q1 -Q2
ΔV +

–

+

–

+

–
For capacitors in parallel the potential is the same.

∆V1 = ∆V2 = ∆V
While the net charge that flows into the system is shared between the
capacitors.

Q = Q1 +Q2

= C1∆V1 + C2∆V2 = C1∆V + C2∆V

−→ C =
Q

∆V
= C1 + C2
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Theorem: Effective Capacitance

Series
1
C

=
1
C1

+
1
C2

Parallel C = C1 + C2

§ 3.8 Capacitor Circuits

Consider the following circuit, which is composed of a power supply
with a fixed electric potential output of VS , a capacitor, a resistor, and
a double pole switch.

VC

+

–

+

–

+–

I

VR

VS +Q

-Q

b

a

To begin with the switch is in position a. In this position all of
the charge will drain from the capacitor. At the time t = 0 the switch
is moved to position b. In this position the power supply will begin to
fill the capacitor with charge. The current I flows into the capacitor.
Thus the charge on the capacitor increases at the rate

dQ

dt
= I

But for a capacitor the charge is proportional to the electric potential
across the capacitor Q = CVC so that

I =
dQ

dt
= C

dVC
dt

Kirchhoff’s loop rule gives us the following equation.
VS − VC − VR = 0

But by Ohm’s Law we have

VR = RI = RC
dVC
dt

Putting this into the loop rule equation we find

VS − VC −RC
dVC
dt

= 0
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This is a differential equation that describes how the voltage on the
capacitor changes with time, similar to how F = ma is a differential
equation that describes how a particles position changes with time. In
this particular case we can find the solution by noting that if we define
a new variable, f(t) = VC − VS then df

dt = dVC

dt since VS is a constant.
Plugging this into our differential equation we find

−f −RC df
dt

= 0

or

df

dt
= − 1

RC
f

This just says that the derivative of f is simply a constant times f .
The only function that has this property is the exponential. So let us
try a function of the form

f = Aeαt −→ df

dt
= αAeαt = αf

Comparing this with our differential equation we see that it is the same
if

α = − 1
RC

Thus

VC − VS = f = Ae−t/RC −→ VC = VS +Ae−t/RC

In order to determine the constant A we need to use the initial condition
of the system. At t = 0 we know that there was no charge on the
capacitor, thus the electric potential on the capacitor was zero at t = 0.
Putting this into the solution we fine that

0 = VC(0) = VS +Ae−0/RC = VS +A −→ A = −VS
So the voltage on the capacitor is

VC = VS(1− e−t/RC)

The combination RC is called the time constant of the circuit because it
has units of time and gives the time scale for the change in the voltage:
in a time RC the difference of the electric potential from it’s final value
(VS) decreases by a factor of e−1 ≈ 3/8.
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Note that the equation for VC does not depend on R or C separately,
but only on the combination RC.

. Problem 3.6

Suppose that the capacitor circuit described above is assembled with
a 10 Volt power supply, a 5.0kΩ resistor, and a 3.0µF capacitor. How
long after the switch is put in position b, will it be before the capacitor
is half charged (5.0V)?

. Problem 3.7

Assume that the capacitor circuit described above is left with the switch
in position b for a long time, so that the capacitor is fully charged to
the voltage VS . The switch is now moved to position a. Show that
VC = VSe

−t/RC .

§ 3.9 More Examples

E
x
a
m

p
l
e The largest part of the nerve cells in your body is called the “axon.”

The axon is in the shape of a cylinder and has sections through which
ions pass, sending electrical signals through the nerve. During a nerve
impuse, for the cylindrical section of an axon indicated below, 10,000
sodium ions (Na+) pass through the surface of the cell membrane in 1
m/s. What is the current and current density into the cell?

Na+

Na+

20μm

100μm
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Each sodium ion has a charge +1.6×10−19C, so for 10,000 ions, ∆Q =
10, 000× (1.6× 10−19C) = 1.6× 10−15C. Since it takes 1ms:

I =
∆Q
∆t

=
1.6× 10−15C

.001s
= 1× 10−12A = 1pA.

The ions flow through the sides of the cylinder, so the magnitude of
the current density is

J =
I

S
=

1.6× 10−12A
(2π)(10µm)(500µm)

= 5.1× 10−5 A

m2
= 51

µA
m2

E
x
a
m

p
l
e A copper wire, with a diameter of 1mm, has a current of 5A flowing

through it. What is the electric field in the wire?
Comment: How can E 6= 0? Earlier it was stated that E = 0 inside a
conductor, however this was for the case of electrostatics. In the case
of a current flowing, since electric charges are not static, the electric
field will be nonzero.
For our wire, the current density is

J =
I

A
=

5A
π(0.0005m)2

= 6.4× 106 A
m2

From Ohm’s law:
J =

1
ρ
E

−→ E = ρJ = (1.7× 10−8Ωm)(6.4× 106 A
m2

)

= 0.11
Ω·A

m
= 0.11

V

m

E
x
a
m

p
l
e A light bulb with a resistance of 3Ω is connected to a 9V battery. In

one second how many electrons flow through the bulb?

-
+

9V

I

R =  3Ω

Use Ohm’s law to find the current:

I =
∆V
R

=
9V
3Ω

= 3A
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This mean that in one second, 3C of charge flows through the resis-
tor. Since each electron (which will flow in a direction opposite the
conventional positive current) carries 1.6× 10−19C of charge:

N =
3A

1.6× 10−19C
× (1s) = 1.9× 1016electrons

E
x
a
m

p
l
e A 20W light bulb is left on in your car’s interior. If the car’s 12V

battery is fully charged and has a capacity of 200Amp-hours. How
long will it take to completely discharge the battery (assuming the
terminal voltage remains 12V throughout the discharge)?
Use electric power P to compute the current that flows:

P = I∆V −→ I =
P

∆V
=

20W
12V

= 1.67A

The amount of charge that will pass through the bulb in a time ∆t
is ∆Q = 1.67A × ∆t. The 200 Amp-hour rating tells us how much
charge can pass from the positive terminal to the negative terminal of
the battery before discharging the battery, so

∆Q200Ahr = (1.67A)∆t

−→ ∆t =
200Ahr
1.67A

= 120hr = 5days

How much charge has flowed?

200Ahr = 200A(3600s) = (200
C
s

)(3600s) = 720, 000C

E
x
a
m

p
l
e Determine the currents in the three resistors of the following circuit:

6Ω

9Ω+

-

+

-

3Ω6V

12V

Let’s label the currents. We will do our best to indicate the correct
directions of the current:
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6Ω

9Ω+

-

+

-

3Ω6V

12V

I1
I3I2

A

We now apply the loop rules to the two loops indicated. In both cases,
start from the point labeled A, moving in the direction indicated, sum-
ming the potential gains or losses across each circuit element. For bat-
teries the potential increases from the negative to the positive terminal.
For resistors the current flows from high to low potential. Applying the
loop rules gives two equations, on for each loop:

−(3Ω)I2 − (6Ω)I1 + 6V = 0
−(3Ω)I2 + 12V − (9Ω)I3 = 0

We also must apply current conservation. Choose the point labeled A:

I1 − I2 + I3 = 0

Now we have 3 equations with three unknowns. Solving the linear set
of equations yields:

I1 = 0.364A
I2 = 1.27A
I3 = 0.91A

Check that these are correct by putting them back into the loop equa-
tions:

−(3Ω)(1.27A)− (6Ω)(0.364A) + 6 −→ −6.0V + 6.0V = 0

−(3Ω)(1.27A) + 12− (9Ω)(0.91A) −→ −12.0V + 12.0V = 0

E
x
a
m

p
l
e Determine the currents in the resistors of the following circuit:
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15V +

- +

-10V

10Ω5Ω15Ω

15Ω

Label the currents, including best guesses for the directions:

15V

+

- +

-

10V

10Ω5Ω15Ω

15Ω

I1

A B

I2 I3

I1

Apply Kirchoff’s loop rules. First to the lefthand loop, beginning at
point A and moving clockwise:

15V − (15Ω)I1 − (5Ω)I2 + 10V − (15Ω)I1 = 0,
then to the righthand loop, beginning at point B and moving counter-
clockwise:

(10Ω)I3 − (5Ω)I2 + 10V = 0.

Note that for a resistor, the conventional positive current flows from
high to low potential, which determines the sign to use when moving
from one side of a resistor to the other.
Now apply Kirchoff’s junction rule at the point labeled B:

I2 + I3 − I1 = 0
Simplifying, we have three equations with three unknowns:

25− 30I1 − 5I2 = 0
10 + 10I3 − 5I2 = 0

I2 + I3 − I1 = 0
To solve, let first eliminate I3:

10 + 10I3 − 5I2 = 10 + 10(I1 − I2)− 5I2 = 0
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−→ 10 + 10I1 − 15I2 = 0

Next multiply the first equation, of the three listed above, by -3:
−→ −75 + 90I1 + 15I2 = 0.

Add the two modified equations together:
10 + 10I1 − 15I2 − 75 + 90I1 + 15I2 = 0

−→ −65 + 100I1 = 0

−→ I1 = .65A

Using this value of I!, we can solve for I2 and I3:
I2 = 1.1A
I3 = −0.45A

The negative value obtained for I3 indicates that the direction for
this current is opposite the direction that was chosen. So I3 flows
up through the 10Ω resistor, not down as indicated in our diagram.

� Do This Now 3.1

Repeat the analysis for the circuit in the previous example, using the current

directions shown below:

15V

+

- +

-

10V

10Ω5Ω15Ω

15Ω

I1

A B

I2 I3

I1

You should not get any negative-valued currents.

E
x
a
m

p
l
e What is the effective resistance between the points A and B for the

following circuit.

A BR  = 15Ω
2

R  = 10Ω
1

R  = 4Ω
3

R  = 30Ω
4
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First combine R1 and R2. Since they are in parallel:
1
R12

=
1
R1

+
1
R2

=
1

10Ω
+

1
15Ω

−→ R12 = 6Ω

The circuit has been reduced to:

BA
R  = 6Ω
12

R  = 4Ω
3

R  = 30Ω
4

Now combine R12 and R3, which are in series:
R123 = R12 +R3 = 6Ω + 4Ω = 10Ω.

This leaves the effective circuit:

BA

R    = 10Ω
123

R  = 30Ω
4

Finally, combine the last two resistances in parallel:
1

RAB
=

1
R123

+
1
R4

=
1

10Ω
+

1
30Ω

−→ R12 = 7.5Ω

E
x
a
m

p
l
e A 12V battery is connected across the points AB in the circuit from the

previous example. What current flows through the R3 = 4Ω resistor?
First find the current that flows from A to B:

IAB =
VAB
RAB

=
12V
7.5Ω

= 1.6A

The incoming current splits between the 30Ω resistor and the effective
resistance R123:

BA

R    = 10Ω
123

R  = 30Ω
4

I    
123

I    
AB

I    
4

We can easily compute the current through the 30Ω resistor, since the
potential difference across it is VAB :

I4 =
VAB
R4

=
12V
30Ω

= 0.4A

Using Kirchoff’s junction rule:
I123 = IAB − I4 = 1.6A− 0.4A = 1.2A.
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Because the R3 = 4Ω resistor in connected in series with the parallel
combination of R1 and R2, the current through it is I123:

−→ I3 = 1.2A

§ 3.10 Homework

. Problem 3.8

In the Bohr model of the hydrogen atom, an electron in the lowest
energy state follows a circular path, 5.29 × 10−11m from the proton.
Show that the speed of the electron is 2.19×106 m

s . What is the effective
current associated with this orbiting electron?

. Problem 3.9

In a particular cathode ray tube, the measured beam current is 20µA.
How many electrons strike the tube screen every 1

30 seconds?
. Problem 3.10

The quantity of charge q (in coulombs) passing through a surface of
area 2.0cm2 varies with time as q = 4t3 + 5t+ 6 where t is in seconds.
What is the instantaneous current through the surface at t = 1.0s ?
What is the value of the current density?

. Problem 3.11

An electric current is given by I(t) = 100.0 sin(120πt), where I is in
amperes and t is in seconds. What is the total charge carried by the
current from t = 0 to t = 1/240s ?

. Problem 3.12

Calculate the average drift speed of electrons traveling through a copper
wire with a cross-sectional area of 1.00mm2 when carrying a current
of 1.00A. It is known that about one electron per atom of copper
contributes to the current. The atomic weight of copper is 63.54 and
its density is 8.92g/cm3.

. Problem 3.13

Eighteen gauge wire has a diameter of 1.024mm. Calculate the resis-
tance of 15.0m of 18-gauge copper wire at 20.0◦C.

. Problem 3.14

Suppose that a voltage surge produces 140V for a moment. By what
percentatge will the ouput of a 120V, 100W lightbulb increase, assum-
ing its resistance does not change?

. Problem 3.15

Two cylindrical copper wires have the same mass. Wire A is twice as
long as wire B. What is the ratio of their resistances?
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. Problem 3.16

Batteries are rated in ampere hours (A · hr), where a battery rated at
1.0A · hr can produce a current of 1.0A for 1.0hr.
(a) What is the total energy stored in a 12.0V battery rated at 55.0A·hr
?
(b) At $0.12 per kilowatt hour, what is the value of the electrical energy
stored in this battery?

. Problem 3.17

What is the required resistance of an immersion heater that will in-
crease the temperature of a 1.5 kg of water from 10◦C to 50◦C in 10
min while operating at 110V?

. Problem 3.18

A battery with an emf of 12V and internal resistance of 0.90Ω is con-
nected to a load resistor R.
(a) If the current in the circuit is 1.4A, what is the value of R?
(b) What power is dissipated in the internal resistance of the battery?

. Problem 3.19

(a) Find the equivalent resistance between points a and b in the figure
below.
(b) If a potential difference of 34V is applied between points a and b,
calculate the current in each resistor.

4 Ω

7 Ω

10 Ω

9 Ω
a b

. Problem 3.20

For the figure below find the current in the 20Ω resistor and the poten-
tial difference between points a and b.

10 Ω
25 V

+-

10 Ω

5.0 Ω
5.0 Ω 20 Ω

a b

. Problem 3.21

Determine the equivalent capacitance for the capacitor network shown
below. If the network is connected to a 12V battery, calculate the
potential difference across each capacitor and the charge on each ca-
pacitor.
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3.0 µF 6.0 µF

2.0 µF

. Problem 3.22

Four capacitors are connected as shown. Find the equivalent capaci-
tance between points a and b. Calculate the charge on each capacitor
in Vab = 15V.

15 µF 3.0 µF

6.0 µF

20 µF

. Problem 3.23

When two capacitors are connected in parallel, the equivalent capaci-
tance is 4.00µF. If the same capacitors are reconnected in series, the
equivalent capacitance is one-fourth the capacitance of one of the two
capacitors. Determine the two capacitances.

. Problem 3.24

For the system of capacitors shown below find the equivalent capaci-
tance of the system, the potential across each capacitor, the charge on
each capacitor, and the total energy stored by the group.

90 V

3 µF 6 µF

2 µF 4 µF

. Problem 3.25

Calculate the equivalent capacitance between the two points shown
in the circuit below. Note that this is not a simple series or parallel
combination.
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+ -

+ -

+
-

+
-

+
-2 µF

4 µF

2 µF

4 µF8 µF

. Problem 3.26

If R = 1.0kΩ and E = 250V determine the direction and magnitude of
the current in the horizontal wire between a and e.

2RR

4R 3R
ε +

- 2ε+
-

a

b
c

d

e

. Problem 3.27

Determine the current in each branch of the figure.
3.0 Ω

8.0 Ω

5.0 Ω

1.0 Ω
1.0 Ω

12 V4 V

. Problem 3.28

A 25-W light bulb is connected in series with a 100-W light bulb and
a voltage V is placed across the combination. Which bulb is brighter?
Explain.

. Problem 3.29

An electric heater is rated at 1500W, a toaster at 750W, and an electric
grill at 1000W. The three appliances are connected to a common 120V
circuit. How much current does each draw? Is a 25A circuit sufficient
in this situation?

. Problem 3.30

An 8-foot extension cord has two 18-gauge copper wires, each having
a diamter of 1.024mm. How much power does this cord dissipate when
carrying a current of 1.0A? How much power does this cord dissipate
when carrying a current of 10A?
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. Problem 3.31

Because aluminum has a greater resistivity than copper, aluminum
wires heat up more than copper wires when they carry the same cur-
rents. For this reason aluminum wire of the same gauge (diameter) is
rated to carry a smaller current. What current in an aluminum wire
will heat up the wire the same amount as a copper wire of the same
gauge carrying 20 Amps?

. Problem 3.32

Consider the following circuit.

3 kΩ

9.0 V

10 µF
R2  = 15 kΩ

12 kΩ

The switch is closed and the capacitor is allowed to charge up.
(a) How much charge will there be on the capactor when it is fully
charged?
(b) Now the switch is opened and the charge on the capacitor drains
off. How long will it take for the capacitor to reach 1/5 of the charge
it had at the moment the switch was opened?
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§ 3.11 Summary

Definitions

Electric Current:
I =

dq

dt

Current Density

J =
I

A

Facts

Ohm’s Law: For many materials current density is proportional to
the electric field.

~J = σ ~E

with σ the conductivity of the material. ρ = 1/σ is called the resistivity.
∆V = IR

with R the resistance of the device.

Theorems

Electric Power:
P = I∆V

Kirchhoff’s Loop Rule: ∑
∆V = 0

Kierchhoff’s Junction Rule:∑
Iin =

∑
Iout

Resistors in Parallel:
1
Reff

=
1
R1

+
1
R2

Resistors in Series:
Reff = R1 +R2

Capacitors in Parallel:
Ceff = C1 + C2

Capacitors in Series:
1
Ceff

=
1
C1

+
1
C2



82 Magnetic Fields 4.11



4.2 Magnetic Force on a Current 83

4 Magnetic Fields

§ 4.1 Magnetic Field

We have all played with magnets at some point. Magnets will
attract some types of metals and can attract and repel other magnets.
This seems similar to electric forces. Magnetic forces can indeed be
explained in terms of magnetic fields, but the connection between the
magnetic field and the magnetic force is significantly different from
that for electric fields and force. The magnetic field is similar to the
electric field in that they are both vector fields. We use the symbol ~B to
represent the magnetic field. If we put a compass needle in a magnetic
field, the field will turn the needle until it is aligned with the direction
of the field. At this point we will use the following simple operational
definition of the magnetic field. The direction of the magnetic field
is the direction that a compass needle points. The magnitude of the
magnetic field is related to how strong the force is that aligns the needle
with the direction of the field.

A magnetic field does apply a force to charged particles. The
magnetic force on the particle has the following properties:
• F ∝ q
• F ∝ v
• F ∝ B
• ~F is perpendicular to both ~v and ~B. These can be combined into the
following succinct formula for the force.

Fact: Magnetic Force
A particle with charge q and velocity ~v in a magnetic field ~B will
feel a force

~F = q ~v × ~B

Notice that there is no force if the velocity is parallel to the mag-
netic field. Also notice that the magnetic force is zero on a stationary
particle.
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We can determine the dimensions of the magnetic
field from the force equation:

F = qvB −→ B =
F

qv

The unit of magnetic field is the Tesla, abbreviated as
just T.

Tesla =
Newton

Coulomb ·meter/second
=

Kilogram
Coulomb · second

§ 4.2 Magnetic Force on a Current

If a current carrying wire is placed in a magnetic field it will expe-
rience a magnetic force. The current in the wire is composed of many
moving charges. Each of these charges experiences a magnetic force.
The force on the wire is the sum of the forces on all the moving charges
in the wire.

Theorem: Magnetic Force on a Current
Suppose that you have a wire that is carrying a current I. A small
section of wire of length ~d`, where the vector points in the direction
of the current, will experience a force

~dF = I ~d`× ~B

The force on a longer section of wire can be found by integrating
over the length of the section.

~F =
∫
I ~d`× ~B

If the magnetic field is uniform over the region containing the wire
then the following result can be proved.

Theorem: Force on a Current in a Uniform Field
Let ~∆` be a vector that points from the beginning to the end of a
section of wire carrying a current I. If that section is in a uniform
magnetic field, the force on that section is

~F = I ~∆`× ~B

. Problem 4.1

Consider a semicircular piece of wire or radius R in the first two quad-
rants of the x-y plane. The wire carries of current I in the counter-
clockwise direction.



4.3 Trajectories Under Magnetic Forces 85

dl

dθ

θ

R

x

y

There is a uniform magnetic field in the y direction, ~B = B̂. We
wish to compute the net force on this section of wire without using the
theorem ~F = I ~∆`× ~B.
(a) If we break the semicircle into small sections, they will be small
sections of arc, as pictured in the diagram above. If we take one of
these, it will be at a position θ, and will subtend an angle dθ. Show
that ~d` = (− sin θı̂+ cos θ̂)Rdθ
(b) With this result you can now compute the integral ~F =

∫
I ~d`× ~B.

Show that the net force on the semicircle is −I2RBk̂.
(c) Show that this is the same answer you get when you apply the
theorem ~F = I ~∆`× ~B.

. Problem 4.2

Consider the rectangular current loop pictured below.

w

h

B

BI

The field is uniform and in the direction indicated in the diagram.
Show that the torque about the axis indicated by the dotted line is
IAB where A is the area of the loop.

§ 4.3 Trajectories Under Magnetic Forces
Because the magnetic force is perpendicular to the velocity of the

particle, the magnetic force can not do work on the particle. Suppose
that a particle moves a small distance ~dr. The work done by a force ~F
as the particle moves is

dW = ~F · ~dr

But ~dr = ~v dt so
dW = ~F · ~v dt
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For a magnetic force, ~v and ~F are prependicular so that ~F ·~v = 0. Thus
dW = 0 for a magnetic force.

Theorem: Work by Magnetic Force
The magnetic force does zero work. Thus the magnetic force can
change the direction but not the speed of a particle.

Because the magnetic force changes only the direction of a particle,
a magnetic field is useful for steering charged particles, once they are
already moving.

Consider a particle that is in a region with a uniform magnetic
field. Suppose that the particles initial velocity is perpendicular to the
magnetic field. Since the magnetic force is always perpendicular to
the direction of the magnetic field, the force will have no component
parallel to the field. So, since the particle started with zero velocity
parallel to the field it will continue to have zero velocity parallel to the
field. But this means that the velocity will always be perpendicular to
the magnetic field, so |~v× ~B| = vB. Thus we know that the magnitude
of the magnetic force is

F ≡ |~F | = q|~v × ~B| = qvB

In addition we know by the previous theorem that the speed of the
particle will be constant, v = v0. So that the magnitude of the force
is constant. In summary, we see that the magnitude of the magnetic
force on the particle is constant and perpendicular to the velocity, so
that the acceleration of the particle is constant and perpendicular to
the velocity. We have run into this situation before: In circular motion
the acceleration is constant and always perpendicular to the velocity.
We are lead by this observation to the following theorem.

Theorem: Circular Trajectories
If a particle is in a region of uniform magnetic field and entered
the region with a velocity perpendicular to the magnetic field, then
the particle will execute circular motion while in the region.

One can relate the radius and velocity of the motion to the field
strength and charge by employing Newton’s second law.

F = ma

−→ qvB = m
v2

r
. Problem 4.3

One can use the circular motion of a charge particle to determine it’s
mass if you already know it’s charge. Suppose that you send a particle
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with a charge 1.6× 10−19C into a field 0.11mT with a speed of 3.83×
105 m

s . The radius of the resulting motion is 2cm. What is the mass of
the particle?

. Problem 4.4

A stream of charged particles
enter a circular region of uniform
magnetic field as shown (gray). The
particles fan-out in the region and
each particle exits along one of the
six trajectories A through F . Pick
the trajectories for particles with the
following properties:

A

F E

D

C

B

(a) Which particles are positively charged?
(b) If all the particles have the same mass and charge, which have the
highest speed?
(c) If all the particles have the same speed and charge, which have the
highest mass?
(d) If all the particles have the same mass and speed, which have the
highest charge?

. Problem 4.5

A particle is moving in a circular trajectory because of a magnetic field.
Show that regardless of the velocity of the particle, it will take the same
amount of time to complete one revolution. The fact that the time is
a constant eased the development of the cyclotron, an early particle
accelerator.

§ 4.4 Lorentz Force
If there is a magnetic as well as electric field then both forces act

on a charge particle at the same time.

Definition: Lorentz Force
The combined electric and magnetic forces on a charge particle is
called the Lorentz Force.

~F = q( ~E + ~v × ~B)

. Problem 4.6

There is a region with a uniform magnetic field ~B = Bk̂ and electric
field ~E = Ê. Particles with charge q are sent into this region with a
velocity ~v = vı̂.
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(a) Show that if v = E/B that the particles will go straight through
the region without deflection.
(b) Show that if v > E/B and q > 0 then the particles will be deflected
in the negative y direction.
(c) Show that if v > E/B and q < 0 then the particles will be deflected
in the positive y direction.
(d) Show that if v < E/B and q > 0 then the particles will be deflected
in the positive y direction.

A device setup with crossed magnetic and electric fields as in the
previous problem is called a velocity selector. Since it sorts out the
particles based on their speeds, if you select out just the ones that
go straight ahead, you have selected particles with a particular speed
v = E/B. By adjusting the field strengths you can choose what velocity
you would like to select.

§ 4.5 Hall Effect
Let us look with more detail at the flow of current in a wire that

is in a magnetic field. Suppose that we have a rectangular conductor
with a current I running through it.

h

w

If we consider the charges in the wire we see that there will be a
magnetic force on the particles that will tend to deflect them to one
face of the conductor.

I I-

But this force will be acting on all the free charges, so they will all shift
upward as they move through the conductor. Keeping in mind that
the positive charge in the conductor does not move, we see that this
shift of the (negative) free charges will build up a net negative charge
on one face of the conductor and net positive charge on the opposing
face.
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But this charge separation will create an electric field, that is in the
opposite direction to the magnetic force, thus the charge will continue
to build up on the face of the conductor until the electric field builds
up to the point where the electric force on the charges balances the
magnetic force on the charges.

- - - - - - - - - - - - - - - - - - -
I I

+ + + + + + + + + + + + + + + + + + +

E E E E E

This will happen any time that a current carrying wire is in a magnetic
field: the wire will spontaneously generate an electric field across the
wire (not end to end but across). This effect, discovered by Edwin
Hall, is called the Hall Effect. Because there is an electric field across
the conductor there will also be an electric potential difference (called
the Hall voltage), ∆V = Ew where w is the width of the conductor.
But we know that in order for the electric force to cancel the magnetic
force, we need E = vB. So we see that

∆V = vBw −→ v =
∆V
Bw

Because it is relatively easy to measure the electric potential difference,
the width of the conductor and the magnetic field strength, this type
of device can be used to measure the velocity of the charge carriers.
Knowing the velocity allows one to determine how many charge carriers
there are per volume. In a time dt a quantity of charge dq = I dt passes
out the end of the wire, and a number of electrons dn = dq/e = I dt/e
passes out of the wire. But we can also say that the charges have moved
a distance dx = v dt in this time, so that a section of charge v dt long
has passed out of the wire. Thus a volume of charge dV = hw v dt
has passed out of the wire (where h is the thickness of the wire and hw
is the cross sectional area of the wire). So the number of conduction
electrons per volume (η) is

η =
dn

dV
=

I dt/e

hw v dt
=

I

ehw v
The carrier density, η, depends on the type of material, not on the
geometry of the material or the amount of current flowing through the
material.

The Hall effect can be used to make a magnetic field sensor. By
using the equation v = ∆V

Bw to eliminate the velocity from the equation
η = I

ehw v , and then solving for B we find that

B = eηh
∆V
I
.

The e, η and h are all constants for a given device, while ∆V and I are
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both easily measured.
The Hall effect also allows us to determine if the charge carriers

are positive or negative. In the analysis above we assumed that the
charge carriers were negatively charged electrons. Consider what would
happen if the charge carriers were positive instead. The positive charges
would also be deflected by the magnetic field.

I I+

Which will build up a field in the opposite direction.

I I
- - - - - - - - - - - - - - - - - - -

+ + + + + + + + + + + + + + + + + + +

E E E E E

Thus we can determine from the sign of the Hall voltage, if the charge
carriers are positive or negative. There are some types of semiconduc-
tors that have positive charge carriers, for example silicon with a little
bit of aluminum mixed in. Semiconductors with positive charge car-
riers are called p-type semiconductors. Semiconductors with negative
charge carriers are called n-type semiconductors.

§ 4.6 More Examples

E
x
a
m

p
l
e An electron is injected horizontally into a parallel plate capacitor with

a velocity v = 4× 106 m
s :

A, +Q

A, -Q

v
-e

The plates are square, with sides 20cm and the charge on the capacitor
is 7.5µC. Describe what magnetic field is required such that the net
force on the electron is zero between the capacitor plates. Ignore any
edge effects.
The electric field points down, since the top plate on the capacitor is
positive. However, since the electron has a negative charge, the electric
force is up. Thus, the force caused by the magnetic field must be down.
Here is what the force diagram on the electron must look like
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-e

FE

v

FB = -e(v x B)

Again, since the electron’s charge is negative, the magnetic force will
point in the direction opposite the cross-product ~v × ~B. So, ~B must
point into the page. The magnitude of B can be determined since the
net force is to be zero:

FB = FE

−→ evB = eE

Or, solving for B:

B =
E

v

For a parallel plate capacitor: E = σ/ε0, so

B =
σ

ε0v
=

Q
A

ε0v

−→ B =
7.5× 10−6C

(0.2m)2(8.85× 10−12 C2

Nm2 )(4× 106 m
s )

= 5.3T

So, ~B must be perpendicular to the electric field, pointing into the page
with a magnitude of 5.3T for the electon to have no net force on it.

E
x
a
m

p
l
e A proton is injected from a region with no magnetic field into a region

with a strip of uniform magnetic field that is 10cm wide:

B = 0.3T

v = ?
+e

L = 10cm

The magnetic field points into the page and has a magnitude of 0.3T.
What is the maximum velocity the proton can have such that it does
not make it across the 10cm magnetic-field region and exit through the
other side?
Upon entering the magnetic field, the proton will experience a force
perpendicular the velocity, which will cause it to follow a circular path:



92 Magnetic Fields 4.6

B = 0.3T

v = ?
+e

L = 10cm

r 

Let’s compute the radius of the path in terms of the velocity. Newton’s
second law applied to the proton yields

FB = m
v2

r

evB = m
v2

r

−→ r =
mv

eB
So as v increases so does r. In order that the proton not exit through
the other side of the magnetic field region we must have r < L;

mv

eB
< L

−→ v <
eBL

m
= 2.9× 106 m

s

E
x
a
m

p
l
e A straight section of wire that is 0.5m long and carrying a current of

I = 8A directed along the +x axis. One end of the wire is at the origin
. The wire is in a magnetic field

~B = ̂
(

3
T

m2

)
x2 + k̂

(
2
T

m

)
x.

What is the force on the wire?
Look at a small section of the wire:

dxx
x

y

z
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The force on this small section is:
d~F = Id~x× ~B

= (Idx)̂ı×
(
̂
(

3
T

m2

)
x2 + k̂

(
2

T

m

)
x
)

= (Idx)
(
k̂(3x2)− ̂(2x)

)
Integrate over the entire length of the wire to get the total force:

~F =

0.5m∫
0

(Idx)
(
k̂(3x2)− ̂(2x)

)
= I

[
ı̂(x3)− ̂(x2)

]0.5m

0

= (8A)
[
(0.5)3 ı̂− (0.5)2̂

]
[T ·m]

= (1N)̂ı− (2N)̂

E
x
a
m

p
l
e An L-shaped section of wire, carryies a current I, and is in a constant

magnetic field, as shown in the figure:

I

B
L1

L2

In terms of the parameters shown, what is the direction and magnitude
of the net magnetic force on the wire?
Use the right hand rule to find the direction of the force on each seg-
ment:

I

B
L1

L2

F1

F2
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The net force is
~F = ı̂F1 − ̂F2

= ı̂IL1B − ̂IL2B

So the direction is given by

θ = tan−1

(
IL2B

IL1B

)
= tan−1

(
L2

L1

)
,

where θ is below the x-axis. The magnitude of the force is

F =
√
F 2

1 + F 2
2 = IB

√
L2

1 + L2
2

E
x
a
m

p
l
e What is the net force on an a× b rectangular loop of wire carrying a

current I that is in a uniform magnetic field perpendicular to the loop’s
plane?
Assume a direction for the magnetic field and use the right hand rule
to draw the forces on each segment of the loop:

B

I

F1

F2

F3

F4

a

b

The net force on the loop is:
~F = ~F1 + ~F2 + ~F3 + ~F4

= ı̂(F2 − F4) + ̂(F3 − F1)
= ı̂(IbB − IbB) + ̂(IaB − IaB)
= 0

E
x
a
m

p
l
e Show that the magnetic force due to a uniform magnetic field for any

closed current loop is zero.
The force law states

~F = I

∮
d~l × ~B
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Imagine the closed loop to be divided up into many d~li, approximated
by a many-sided polygon:

B

I

So, the integral is just the limit of a sum over all of the small segments:∮
d~l × ~B = d~l1 × ~B + d~l2 × ~B + · · ·

= (d~l1 + d~l2 + · · ·)× ~B

=
(∮

d~l

)
× ~B

~B is outside the integral because it is constant. The vector sum indi-
cated by the integral in the last line must vanish since the vectors form
a close polygon; graphical vector addition yields zero. Thus,

~F = I

∮
d~l × ~B

= I

(∮
d~l

)
× ~B

= 0

§ 4.7 Homework

. Problem 4.7

Consider an electron near the equator. In which direction does it tend
to deflect by the magnetic field of the earth if its velocity is directed
(a) downward, (b) northward, (c) westward, or (d) southeastward?

. Problem 4.8

An electron moving along the positive x axis perpendicular to a mag-
netic field experiences a magnetic deflection in the negative y direction.
What is the direction of the magnetic field?

. Problem 4.9

An electron in a uniform electric and magnetic field has a velocity of
1.2×104 m

s in the positive x direction and an acceleration of 2.0×1012 m
s2



96 Magnetic Fields 4.7

in the positive z direction. If the electric field has a strength of 20N/C
in the positive z direction, what is the magnetic field in the region?

. Problem 4.10

A duck flying due north at 15m
s passes over Atlanta, where the Earth’s

magnetic field is 5.0 × 10−5T in a direction 60◦ below the horizontal
line running north and south. If the duck has a net positive charge of
0.040µC, what is the magnetic force acting on it?

. Problem 4.11

A proton moves with a velocity of v = (2ı̂ − 4̂ + k̂)m
s in a region in

which the magnetic field is ~B = (̂ı+ 2̂− 3k̂)T. What is the magnitude
of the magnetic force this charge experiences?

. Problem 4.12

Show that the work done by the magnetic force on a charged particle
moving in a magnetic field is zero for any displacement of the particle.

. Problem 4.13

Below is shown a cube (40cm on each edge) in a magnetic field with a
wire carrying a current I = 5.0A over the surface of the cube. If there
is a magnetic field ~B = 0.020T̂. What is the magnitude and direction
of the magnetic force on each straight segment of the current loop?

z

x

y

I

a

b

c

d

B

. Problem 4.14

A singly charged positive ion has a mass of 3.20×10−26kg. After being
accelerated through a potential difference of 833V, the ion enters a
magnetic field of 0.920T along a direction perpendicular to the direction
of the field. Calculate the radius of the path of the ion in the field.

Find the velocity of the particle first then use the circular motion
result.

. Problem 4.15

A proton (charge +e, mass mp), a deuteron (charge +e, mass 2mp),
and an alpha particle, (charge +2e, mass 4mp) are accelerated through
a common potential difference, V . The particles enter a uniform mag-
netic field B, in a direction perpendicular to B. The particles move in
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circular orbits. Write the radii of the orbits of the deuteron, rd, and
the alpha particle, rα, in terms of the radius of the protons orbit rp.

. Problem 4.16

Indicate the initial direction of the deflection of the charged particles
as they enter the magnetic fields shown below.

+ -

+

+

(a) (b)

(c) (d)

. Problem 4.17

A proton moves through a uniform electric field ~E = 50̂V/m and a
uniform magnetic field ~B = (0.20ı̂ + 0.30̂ + 0.40k̂)T. Determine the
acceleration of the proton when it has a velocity ~v = 200ı̂ms .
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§ 4.8 Summary

Definitions

Facts

Force on a moving charge:
~F = q~v × ~B

Force on a piece of wire carrying a current I:
~dF = I ~d`× ~B

Theorems
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5 Sources of Magnetic Field

§ 5.1 Sources of Magnetic Field

So far we have not considered how magnetic fields are created. As
you may know it is possible to create an electromagnet by wrapping
a wire around a nail and running a current through the wire. The
precise way in which a current produces a magnetic field is captured in
the following law.

Fact: Biot-Savart Law
If you have a wire carrying a current I, a small section of the wire
~d` will produce a magnetic field

~dB =
µ0I

4π

~d`× r̂
r2

where ~r is the vector that points from the location of the element
~d` to the field point. The total field is the sum of the contributions
of each element of the wire.

This may look complicated but it represents the simple fact that
the magnetic field wraps around the wire, and decreases in strength as
you move away. In the figure below is depicted two magnetic field lines
that are due to the current element ~d` indicated.

Note that the field warps around the extension of the current element
in circles. This figure does not depict how the field strength changes
with position. The direction the field wraps around the current is the
same direction the fingers of your right hand will wrap around the wire
if you grasp the wire with your thumb pointing in the direction of the
current.
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In order to apply the Biot-Savart law one must first parameterize
the curve that the wire follows. A parameterization for a curve is a
vector function ~r(t) of one variable t, such that ~r(t) points from the
origin to the curve and sweeps along the curve as the variable t is
increased. Below is picture such a vector function at the values of t.

The variable t is not the time, but it is sometimes helpful to think of
it as the time, so that you can imagine ~r(t) is the position of some
particle that is following the curve.

As an example consider the following vector function of t.
~r(t) = a cos t̂ı+ a sin t̂

This is a parameterization of a circle of radius a centered at the origin.
There are other parameterizations of a circle. For example ~r(t) =
a cos t̂ı−a sin t̂ is also a parameterization of a circle, but as t increases
the vector sweeps clockwise rather than counterclockwise.

. Problem 5.1

For the parameterization of a circle ~r(t) = a cos t̂ı+ a sin t̂, over what
range would you need to vary t in order to have the vector sweep over
the quarter circle in the second quadrant?

Here are some other parameterizations.

Straight Line : ~r(t) = at̂ı+ bt̂+ ck̂

Helix : ~r(t) = a cos t̂ı+ a sin t̂+ btk̂

Spiral : ~r(t) = t cos t̂ı+ t sin t̂

Vertical Parabola : ~r(t) = ~a+ bt̂ı+ ct2̂

Horizontal Parabola : ~r(t) = ~a+ bt2 ı̂+ ct̂
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. Problem 5.2

Write a parameterization for a parabola that goes through the three
points (-1,0), (0,1) and (1,0).

With the parameterization in hand we can proceed with a compu-
tation using the Biot-Savart law. First we notice that if we change t
a little bit dt that the difference between ~r(t) and ~r(t + dt) is a short
vector along the curve.

So we see that the small section along the curve ~d` that appears in the
Biot-Savart law can be found from our parameterization. Further since

~dr = ~r(t+ dt)− ~r(t) =
~r(t+ dt)− ~r(t)

dt
dt =

~dr

dt
dt

we can write
~d` =

~dr

dt
dt

This was the main point of the parameterization, now we can “add up”
the contributions from all the section by integrating over the parameter
t.

We still need to do another step before we can write out the in-
tegral. We need to write out the vector that points from the current
element ~d` to the field point. So that we do not get the different vectors
mixed up, let us call the vector that points from the origin to the field
point ~rf , and let us call the parameterization of the current path ~rs(t).
Then the vector that points from the current element to the field point
can be written as

~r = ~rf − ~rs(t)
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Now we can write out the Biot-Savart integral in terms of the
parameterization.

~B(rf ) =
µ0I

4π

∫ ~d`× r̂
r2

=
µ0I

4π

∫ ~d`× ~r
r3

=
µ0I

4π

∫ ~drs

dt × [~rf − ~rs(t)]
|~rf − ~rs(t)|3

dt

This gives us a system by which we can find the field at any point due
to any current that we can parameterize. Of course it is very rare that
the integral has an analytic solution, but one can use a computer to
evaluate the integral numerically once you have used this system to
write out the integral.

In order to see exactly what all this means let us do an example.

E
x
a
m

p
l
e Suppose that we have a current of 15 amps going through a section of

wire that follows the curve below, which has the following parameteri-
zation.

~rs(t) = (−t+ t3)̂ı+ t2̂

Where the distance is in meters, and t goes from -0.9 to 0.9.

We want to find the field at the point ~rf = 0ı̂+ 1̂. In preparation for
plugging into the Biot-Savart law we compute the following quantities.

~rf − ~rs(t) = (t− t3)̂ı+ (1− t2)̂ = (1− t2)(t̂ı+ 1̂)

|~rf − ~rs(t)|2 = (1− t2)2(t2 + 1)

|~rf − ~rs(t)|3 = (1− t2)3(t2 + 1)3/2

and
~drs
dt

= (−1 + 3t2)̂ı+ 2t̂
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and
~drs
dt
× [~rf − ~rs(t)] =

[
(−1 + 3t2)̂ı+ 2t̂

]
×
[
(1− t2)(t̂ı+ 1̂)

]
= (1− t2)

[
(−1 + 3t2)̂ı+ 2t̂

]
× [(t̂ı+ 1̂)]

= (1− t2)
[
(−1 + 3t2)− 2t2

]
k̂

= −(1− t2)2k̂

Now putting this into the parameterized form of the Biot-Savart law
we find:

~B(~rf ) =
µ0I

4π

∫ ~drs

dt × [~rf − ~rs(t)]
|~rf − ~rs(t)|3

dt

=
µ0I

4π

∫ 0.9

−0.9

−(1− t2)2k̂

(1− t2)3(t2 + 1)3/2
dt

= −µ0I

4π
k̂

∫ 0.9

−0.9

1
(1− t2)(t2 + 1)3/2

dt

= −µ0I

4π
k̂ [1.9367m−1]

= −(2.90mT)k̂

. Problem 5.3

Consider a straight section of wire along the x-axis that goes from x = a
to the x = b. The wire carries a current I. What is the magnetic field
at the position ~rf = ŷ.

. Problem 5.4

A circular section of wire is carrying a current I counterclockwise. The
arc of the wire subtends an angle of θ. The circle has a radius a. What
is the magnetic field due to this section of wire at the center of the
circle?

!

§ 5.2 Ampere’s Law
In addition to the Biot-Savart law, there is another way of stat-

ing the relationship between a current and the magnetic field it pro-
duces.
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Fact: Ampere’s Law
For any closed curve the line integral of the magnetic field around
the curve is equal to the µ0 times the net current through the
surface enclosed by the curve.∮

~B · ~d` = µ0Ithrough = µ0

∫
~J · ~dA

It is not at all apparent that Ampere’s law is equivalent to the Biot-
Savart law, but it is. One can prove the Biot-Savart law from Ampere’s
Law and visa versa. While they are mathematically equivalent, they
are useful in different situations. Ampere’s law is useful for abstract
reasoning about fields, and for finding the field strength in highly sym-
metric configurations.

It is important when applying Ampere’s law to keep in mind that
the amperian loop does not correspond to anything physical. There
does not need to be anything there in order for the law to work. You
are free to choose the amperian loop to be any shape you like. Of
course, as was the case with applying Gauss’s law, if you want to use
the law to find the field strength you need to pick the loop correctly.
In order to use Ampere’s Law to find the field strength, you need three
things from the loop.
• The loop must pass through the point at which you want to find the
field strength and be parallel to the field at that point.
• The loop must be either parallel or perpendicular to the field at all
points on the loop.
• In all regions where the loop is parallel to the field, the field must
have the same strength.

E
x
a
m

p
l
e Ampere’s law can be used to find the field strength a distance r from

a long straight wire. We will take our loop to be a circle that wraps
around the wire and has a radius r.
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This satisfies all three of the above requirements. Since the loop is
parallel to the field at all points on the loop,

~B · ~d` = Bd`

and since B has the same value at all points on the loop,∫
Bd` = B

∫
d` = B2πr

But by Ampere’s Law this must also be equal to µ0I. Thus

B2πr = µ0I −→ B =
µ0I

2πr

E
x
a
m

p
l
e In the previous example we found the magnetic field outside of a long

wire. Now let us find the magnetic field that is inside the wire itself.
The method is much the same. We choose our loop to be a circle of
radius r that wraps around the central axis of the wire, which we has
a radius R. Since we want to find the field inside the wire we will be
working with r < R. We still find the same results that B = µ0I

2πr , but
we must remember the current in this equation is the current that goes
through our loop. This current is not the full current of the wire, since
our loop does not enclose the entire wire. So we need to find the current
through our loop of radius r. Let us assume that the current density
in the wire is uniform. Then we can say that the total current in the
wire is I = JπR2 and the current through the loop is Ithrough = Jπr2.
Combining these two equations to eliminate J we find that

Ithrough =
r2

R2
I.

So that

B =
µ0Ithrough

2πr
=
µ0I

2πr
r2

R2
=

µ0Ir

2πR2

The following graph shows the magnetic field both inside and outside
the conductor.
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E
x
a
m

p
l
e In this example we will see how to deal with a current density that is

not uniform. Suppose that we have a long wire with a current density
that is greater at the center and drops off to zero at the edge: J(r) =

3I
πR2 (1− r/R). We want to find the magnetic field and from Ampere’s
law we find B = µ0Ithrough

2πr . The difficulty is that since J is not uniform
we cannot use I = JA to find Ithrough. We need to use dI = JdA to
find Ithrough =

∫
JdA. This example will show how to do that.

We need to pick the area elements
so that the current density is uniform
over the entire surface of each element.
Since the current density is a function
of r only, J is constant in regions that
are circles around the center. So we will
use a circular element dA, as pictured in
gray in the figure. The figure shows a
cross section of the wire.

R

r+
dr

r

dA

In the limit that dr is very small the area will be simply the length
around the circular area element, 2πr times the width of the element
dr so that dA = 2πr dr. Now we can compute the current inside a loop
of radius rloop by integrating.

Ithrough =
∫ rloop

0

J dA =
∫ rloop

0

3I
πR2

(1− r/R)2πr dr

= I
r2

R2

(
3− 2

r

R

)
−→ B =

µ0Ithrough

2πr
=

µ0Ir

2πR2

(
3− 2

r

R

)

. Problem 5.5

Consider a long wire where the current density is not uniform but
instead increases as you approach the center of the wire, so that at a
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distance r from the center the current density is J(r) = I
2πRr . Note

that this is not a very realistic current density but it is easy to work
with. Find the magnetic field strength both inside and outside of this
wire.

§ 5.3 Force Between Parallel Wires

Now that we know that the strength of the magnetic field produced
by a long straight current carrying wire we can find the force between
two parallel wires.

In the figure above the field produced by current B in the region of
current A is shown. Using the right hand rule we can see that the
direction of the force on wire A is toward wire B. We can also see that
the field and the current are perpendicular so that the magnitude of
the force on a length L of wire A is

F = IALB = IAL
µ0IB
2πd

=
µ0IAIBL

2πd
where d is the distance between the wires.

Theorem: Force Currents
Two long parallel wires have a force per length between them of

F

L
=
µ0IAIB

2πd
where d is the distance between the currents.

. Problem 5.6

An electrical cable carries 45 amps in each of two wires that are a
distance of 4mm apart. The currents are in opposites directions.
(a) Is the force between the wires attractive or repulsive?
(b) What is the force per length between the wires?

§ 5.4 More Examples
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E
x
a
m

p
l
e Finite Wire

A straight wire of length a carries a current I. What is the magnetic
field caused by the current at a point (x, y) measured from the center
of the wire?

y

x
What is B here?

The wire is a straight line, which can be parametrized:

~rs = (at)̂ı,

where t varies from − 1
2 to + 1

2 . So we have:
d~rs
dt

= aı̂

We want to find the magnetic field at the position

~rf = xı̂+ ŷ,

Collect the quantities needed for applying the Biot-Savart law:
~rf − ~rs = (x− at)̂ı+ ŷ

| ~rf − ~rs | =
√

(x− at)2 + y2

d~rs
dt
× (~rf − ~rs) = (aı̂)× ((x− at)̂ı+ ŷ)

= ayk̂

Using the Biot-Savart law:

~B(x, y) =
µ0I

4π

∫ d~rs

dt × [~rf − ~rs]
| ~rf − ~rs |3

dt

=
µ0I

4π

1
2∫

− 1
2

ayk̂

((x− at)2 + y2)
3
2
dt

= −µ0Iy

4π

x− a
2∫

x+ a
2

du

(u2 + y2)
3
2
k̂

where I have substituted u = x − at into the last expression. Looking
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up the integral:

~B(x, y) =
µ0Iy

4π

[
u

y2
√
u2 + y2

]x+ a
2

x− a
2

k̂

=
µ0I

4πy

 x+ a
2√(

x+ a
2

)2 + y2

−
x− a

2√(
x− a

2

)2 + y2

 k̂

The resulting expression gives the magnetic field anywhere in the plane
we’ve chosen as the xy-plane. What about points that lie out of this
plane? Let’s rotate our diagram:

B points out

(x, y)

(x, y)

I I

I points out

Looking from the side Looking down the wire

B

Now imagine rotating the xy plane around the wire. Since the distances
x and y remain the same, only the direction of k̂ will change. The
following diagram shows how the position of the magnetic field will
change for different points, that are equidistant from the line:

I

The magnetic field “rotates” around the wire. A quick method to
determine which direction the rotation of the field goes is to use a
modified right-hand rule: Stick your right thumb in the direction of
the current and your fingers will point in the direction of the field’s
rotation.

E
x
a
m

p
l
e Using Ampere’s Law we found that the magnetic field strength at a
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distance r from an infinite wire was µ0I
2πy . Let us take the limit of a→∞

of the results we have for the finite wire, and see if we get the same
results.

B = lim
a→∞

µ0I

4πy

 x+ a
2√(

x+ a
2

)2 + y2

−
x− a

2√
(x− a

2 )2 + y2


=
µ0I

4πy

(
a
2√
(a2 )2

−
−a2√
(−a2 )2

)
=
µ0I

2πy
OK
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e A circular wire with radius a carryies a current I. Locate the circle

in the xy-plane and compute the magnetic field it causes along a line
through its center.

Here is the geometry of the loop:

rs

rf

z

dl

The path along the circle can be parameterized using t = [0, 2π]:
~rs = a cos t ı̂+ a sin t ̂
~drs
dt

= −a sin t ı̂+ a cos t ̂

We also have
~rf = z k̂

~rf − ~rs = −a cos t ı̂− a sin t ̂+ z k̂

| ~rf − ~rs | =
√
a2 cos2 t+ a2 sin2 t+ z2

=
√
a2 + z2

Compute the cross product needed for the Biot-Savart law:
~drs
dt
× (~rf − ~rs) = (−a sin t̂ı+ a cos t̂)× (−a cos t̂ı− a sin t̂+ zk̂)

= az cos t̂ı+ az sin t̂+ (a2 sin2 t+ a2 cos2 t)k̂

= az cos t̂ı+ az sin t̂+ a2k̂
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Use the Biot-Savart law:

~B =
µ0I

4π

∫ ~drs

dt × [~rf − ~rs]
| ~rf − ~rs |3

dt

=
µ0I

4π

2π∫
0

az cos t̂ı+ az sin t̂+ a2k̂

(a2 + z2)
3
2

dt

Since the integrals of the cosine and sine vanish for the interval [0, 2π],
the resulting magnetic field is:

~B =
µ0Ia

2

4π (a2 + z2)
3
2
k̂

2π∫
0

dt

−→ ~B =
µ0I

2
a2

(a2 + z2)
3
2
k̂

E
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e A semi-circular shaped wire with radius a carryies a current I. What

is the magnetic field caused at the center of the semi-circle’s diameter?

a

I

B = ?

Divide the wire into small sections and compute the magentic field
contribution due to one small section:

dθ

dl

dB

The direction for all sections is up, by the right hand rule. Use the
Biot-Savart law for the magnitude:

d ~B =
µ0

4π
Id~l × ~r′

r′3
k̂

=
Iµ0

4π
(dl)(a)
a3

k̂,
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since d~l and the radius vector to the point are perpendicular. The
length of dl can be approximated by the length of the arc subtended
by the angle ∆θ, so

|d ~B| = Iµ0

4π
(adθ)(a)

a3
,

=
Iµ0

4π
dθ

a

To find the magnetic field due to the entire wire, integrate:

B =
Iµ0

4π

π∫
0

dθ

a
=
Iµ0

4a

E
x
a
m
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e Two sections of straight wire carrying electric current lie parallel to

each other, a distance b apart:

I1

I2
b

a

The leftmost ends of the wires are aligned. What is the force that
current I1 exerts on current I2? Draw a coordinate system:

2

I1

I2
b

x

y
dx'

x'

a-x=

The z-axis points out of the page. From a previous example, we know
that the magnetic field due to I1 in the xy-plane is

~B2(x, y) =
µ0I1
4πy

 x+ a
2√(

x+ a
2

)2 + y2

−
x− a

2√
(x− a

2 )2 + y2

 k̂
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The magnetic force on the small segment, dx′ indicated for I2 is

d~F21 = I2(dx′ ı̂)× ~B2(x′, b)

=
µ0I1I2

4πb
(̂ı× k̂)

 x′ + a
2√(

x′ + a
2

)2 + b2
−

x′ − a
2√(

x′ − a
2

)2 + b2

 dx′

=
µ0I1I2

4πb
(−̂)

 x′ + a
2√(

x′ + a
2

)2 + b2
−

x′ − a
2√(

x′ − a
2

)2 + b2

 dx′

To compute the total force on I2, integrate over the length of the wire:

~F21 = −̂ µ0I1I2
4πb

0∫
−a
2

 x′ + a
2√(

x′ + a
2

)2 + b2
−

x′ − a
2√(

x′ − a
2

)2 + b2

 dx′

The integrals can be done using simple substitution, and yield:

~F21 = −µ0I1I2
4πb

(√
a2 + b2 − b

)
̂

What is the force exerted on I1 by I2? Newton’s third law gives us the
answer:

~F12 =
µ0I1I2

4πb

(√
a2 + b2 − b

)
̂

Notice that the two wires attract each other. What would happen if
one of the current’s directions was reversed?

Theywouldrepeleachother

§ 5.5 Homework

. Problem 5.7

Calculate the magnitude of the magnetic field at a point 100 cm from
a long, thin conductor carrying a current of 1.0 A.

. Problem 5.8

A wire in which there is a current of 5.00 A is to be formed into a
circular loop of one turn. If the required value of the magnetic field at
the center of the loop is 10.0µT, what is the required radius?

. Problem 5.9

In Neils Bohr’s 1913 model of the hydrogen atom, an electron circles
the proton at a distance of 5.3 × 10−11m with a speed of 2.2 × 106 m

s .
Compute the magnetic field strength that this motion produces at the
location of the proton.
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. Problem 5.10

Determine the magnetic field at a point P located a distance x from
the corner of an infinitely long wire bent at a right angle, as shown.
The wire carries a steady current I.

xI
P

. Problem 5.11

Consider the current-carrying loop shown below, formed of radial lines
and segments of circles whose centers are at point P . Find the magni-
tude and direction of ~B at P .

bI

a
θ

P

. Problem 5.12

Two long, parallel conductors separated by 10.0 cm carry currents in
the same direction. If I1 = 5.00A and I2 = 8.00A, what is the force
per unit length exerted on each conductor by the other?

. Problem 5.13

Imagine a long cylindrical wire of radius R that has a current density
J(r) = J0(1− r2/R2) for r ≤ R and J(r) = 0 for r > R, where r is the
distance from a point of interest to the central axis running along the
length of the wire.
(a) Find the resulting magnetic field inside and outside the wire.
(b) Plot the magnitude of the magnetic field as a function of r.
(c) Find the location where the magnetic field strength is a maximum,
and the value of the maximum field.

. Problem 5.14

Below is shown a cross-sectional view of a coaxial cable. The center
conductor is surrounded by a rubber layer, which is surrounded by
an outer conductor, which is surrounded by another rubber layer. The
current in the inner conductor is 1.00 A out of the page. The current in
the outer conductor is 3.00 A into the page. Determine the magnitude
and direction of the magnetic field at the points indicated at a distance
1mm and 3mm from the center.
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1.00 A

3.00 A

1 mm 1 mm 1 mm

. Problem 5.15

A long cylindrical conductor of radiusR carries a current I. The current
density J is not uniform over the cross-section of the conductor but is a
function of the radius J = br, where b is a constant. find the magnetic
field inside and outside the conductor.
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§ 5.6 Summary

Definitions

Facts

Field due to a section of current:

~dB =
µ0I

4π

~d`× r̂
r2

Theorems

Ampere’s Law: ∮
~B · ~d` = µ0

∫
~J · ~dA
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6 Time Varying Fields

§ 6.1 Introduction

Let us take a moment to review what we know about the means
of producing electric and magnetic fields. We have found two means to
produce fields.
• Electric fields are produced when there are regions in space with a
net electric charge. This is encapsulated in Gauss’s law.∮

~E · ~dA =
1
ε0

∫
ρ dV

• Magnetic fields are produced when there is a flow of charge. This is
encapsulated in Ampere’s law.∮

~B · ~d` = µ0

∫
~J · ~dA

So far, we have investigated only steady state fields (fields that don’t
change in time). A net electric charge and a steady flow of charge are
the only means to produce steady state electric and magnetic fields.
But these are not the only means of producing time varying fields. In
this chapter we will investigate time varying electromagnetic systems.

§ 6.2 Faraday’s Law

Let us start by considering what will happen if we have some source
of time varying magnetic field. It could for example be a wire that is
carrying a current and the current is changing rapidly in time. Since
the current is changing in time, the magnetic field that the current
creates will also change with time.

If we place a loop of wire into this time varying
magnetic field, the time varying field will produce
a current in the wire. This is called an induced
current. Nikola Tesla was able to produce such
strong induced currents that he was able to make
a light bulb glow with the current. In the photo
to the right Tesla is holding a light bulb which
has no wires connected to it. The current driving
the bulb is entirely an induced current, which is
caused by the time varying magnetic field.
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The induced current is caused by an electric field. This induced
electric field is not like the other electric fields we have seen. This is a
new type of electric field. The electric field is created by the changing
magnetic field.

The electric field wraps around the changing
magnetic field somewhat like a static magnetic field
wraps around a steady current. There are some ad-
ditional subtleties due to the fact that the induced
electric field is caushed by the change in the magnetic
field. The relationship between the induced electric
field and the changing magnetic field is stated in the
following law of physics.

Fact: Faraday’s Law
The line integral of the electric field around any closed curve is
equal to negative the rate of change of the magnetic flux through
any surface bounded by the curve.∮

~E · ~d` = − d

dt

∫
~B · ~dA

Notice that this is very similar to Ampere’s Law:∮
~B · ~d` = µ0

∫
~J · ~dA

Ampere’s Law and Faraday’s Law both relate the line integral around
closed curve to the flux of a vector field through the area enclosed by
the curve. The difference is that Faraday’s Law has the time derivative
of the flux.

Another important and potentially confusing thing to notice, is
that the line integral of the electric field (

∫
~E · ~d`) has so far been

referred to as the electric potential difference between the end points
of the curve. The confusing thing is that since it is a closed curve the
electric potential difference must be zero, ∆V = 0, while Faraday’s Law
tells us that the line integral of the induced electric field is not zero, but
equal to the rate of change of the magnetic flux. So we learn from this
that the force caused by the induced electric field is not a conservative
force field. We also see that there is no electric potential associated with
this electric field, ( ~E 6= −~∇V ). To avoid confusion we will refer to the
line integral of the induced electric field by its historical name, the
electromotive force, or EMF. In equations the EMF is represented by
the symbol E , so that E =

∮
~E · ~d`. Note that the unit of EMF is the

volt.
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Definition: Magnetic Flux
The integral of the magnetic field over the area of the loop is called
the magnetic flux.

φm =
∫

~B · ~dA

Note that this is of the same form as the definition of the electric
flux (φe =

∫
~E · ~dA), in addition you may have noticed that current

is the flux of current density, (I =
∫
~J · ~dA). With the definition of

magnetic flux and EMF we can rewrite Faraday’s Law in a simpler
looking form.

Theorem: Faraday’s Law (alternate form)
The induced EMF in a loop is equal to the negative rate of change
of the magnetic flux through the loop.

E = −dφm
dt

E
x
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m
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l
e Suppose that we are in a region where the magnetic field is uniform

and increasing with time:
~B = ~B0 + at̂ı+ bt̂+ ctk̂.

We place a loop of wire with an area of A, so that it lies flat in the x-y
plane. We want to compute the induced EMF in the loop. Since the
loop is in the x-y plane we know that in computing the magnetic flux
(
∫
~B · ~dA), that the area elements will all be pointing in the z direction:

~dA = k̂ dA. So

φm =
∫

~B · ~dA =
∫

( ~B0 + at̂ı+ bt̂+ ctk̂) · k̂ dA

=
∫

(B0z + ct) dA = (B0z + ct)
∫
dA = (B0z + ct)A

So we can compute the induced EMF in the loop.

E = −dφm
dt

= − d

dt
[(B0z + ct)A] = −cA

What can we learn from this example? First we learn that only the
component of the magnetic field that is normal to the surface of the loop
contributes to the magnetic flux. Second we see that no component
of the constant part of the field, ~B0, contributes to the induced EMF,
only the time varying part of the field induces an EMF.
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~B = B0 cosωt k̂
Again we take the loop in the x-y plane.

Because the field is uniform we again get the result that the flux is the
product of the normal component of the field and the area of the loop.

φm = B0A cosωt
And thus that

E = −dφm
dt

= B0Aω sinωt

The previous example will be very helpful in understanding the
relationship between the direction of the magnetic field and the direc-
tion of the induced electric field. As we said before the induced electric
field wraps around the magnetic field, but we did not say in which di-
rection it wraps itself. The above example will help us understand the
direction.

First notice that in the figure above a positive magnetic field is
one that is in the positive z direction, while a positive electric field is
one that is counterclockwise. (This choice of positive directions is in
compliance with another right hand rule, that we will express as Lenz’s
law in just a moment.) Now examine the graph of the electric and
magnetic fields. Sometimes the fields have the same sign and sometimes
they do not. Let us analyze the the graph in four quarters. In the first
quarter notice that the electric field is counterclockwise, the magnetic
field is positive, and the magnitude of the magnetic field is decreasing.
This is represented in symbols in the first row of the table below. The
other three quarters follow.
• First Quarter: E and B ↑ and |B| ↘.
• Second Quarter: E and B ↓ and |B| ↗.
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• Third Quarter: E and B ↓ and |B| ↘.
• Fourth Quarter: E and B ↑ and |B| ↗.

Here are the same four quarters in diagrams:

Notice that if the magnitude of the flux is decreasing, the fields have
the same sign. While if the magnitude of the flux is increasing, the
fields have opposite sign. This observation is usually stated in terms of
the current that is caused by the induced electric field if a loop of wire
is placed in line with the electric field loop.

Fact: Lenz’s Law
The induced current creates a magnetic field that opposes the
change in the magnetic flux.

. Problem 6.1

Check to see that Lenz’s law is obeyed in all four quarters in the pre-
vious example.

§ 6.3 Maxwell’s Extension of Ampere’s Law
We have seen that a changing magnetic field causes an electric field.

It ends up that a changing electric field will also cause a magnetic field.∮
~B · ~d` = µ0ε0

d

dt

∫
~E · ~dA

This magnetic field is added to the magnetic field produced by cur-
rents so that we arrive at an extension of Ampere’s law that makes it
applicable to time varying fields.

Fact: Ampere’s Law - Time Varying∮
~B · ~d` = µ0

∫
~J · ~dA+ µ0ε0

d

dt

∫
~E · ~dA

= µ0Ithrough + µ0ε0
dφe
dt
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The quantity ε0
dφe

dt is sometimes called the displacement current
because it acts like a current in Ampere’s Law.

. Problem 6.2

You have a parallel plate capacitor with circular plates. The capacitor is
being charged so that the electric field between the plates is increasing
at a constant rate: E = at, with a = 4.5 × 1010V · m−1s−1. Use
the extended version of Ampere’s Law to find the magnetic field at
a distance r = 4.0cm from the center of the capacitor and half way
between the plates. Assume that the field is circular about the axis of
the capacitor.

§ 6.4 Inductance
Suppose that you have a loop of wire in a region where there is no

source of magnetic field. If you run a current through the wire there
will now be a magnetic field due to the current. This magnetic field will
create a magnetic flux through the loop. Because the field produced
is proportional to the current, the flux will also be proportional to the
current.

φm = LI

The proportionality constant L is called the self inductance of the loop.
The induced EMF on the loop is the product of the inductance and the
rate of change of the current.

E = L
dI

dt
Circuit elements are manufactured with specific values of inductance,
and are called inductors. The SI unit of inductance is called the Henry,
abbreviated as H. Inductors are essentially a coil of wire, sometimes
wrapped around a core of material designed to increase the inductance.
The sign of E has been chosen in such a way as to facilitate the appli-
cation if Kirchhoff’s loop rule to inductors. It is the same convention
that was used for the resistor.

+ –ΔV

I

ε+ –

I

For an inductor Lenz’s law can be interpreted as “the induced EMF
across an inductor is in such a direction as to oppose the change in the
current through the inductor”. For example, suppose that a current
is flowing through an inductor, if you now try and reduce the current,
an EMF will be generated in the inductor that will tend to keep the
current going. Similarly if you try to increase the current an EMF will
be generated that will tend to stop the current from increasing.
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Suppose that you have the circuit shown.
By some means you have established a current
in the circuit (perhaps it is an induced current
caused by some external magnetic field) such
that at t = 0 the current is I0. At t = 0 the
external cause of the current disappears. What
will happen to the current? +– ΔV

I

ε+ –

I

Since the inductor opposes the change in the current the current
will not stop abruptly. Instead it will decrease gradually, the inductor
will drive the circuit for a while. Note that this implies that an inductor
can store energy, much like a capacitor can. Let us see how we would
do the circuit analysis of this system.

Kirchhoff’s Loop rule give us that
E + ∆V = 0

−→ L
dI

dt
+ IR = 0

−→ dI

dt
= −R

L
I

−→ I(t) = I0e
−R

L t

Thus we see that the current will decay exponentially.

. Problem 6.3

The circuit below is assembled with the switch open. At the time t = 0
the switch is closed.

+– ΔV

I

ε+ –

I

VS
+

–

(a) What is the current as a function of time?
(b) What is the EMF as a function of time?
(c) What is the voltage on the resistor as a function of time?
(d) Check to see if Kirchhoff’s loop rule is satisfied at all times.
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(e) Sketch the graphs of all three functions.

§ 6.5 Alternating Current

Often the currents in a circuit are sinusoidal.
I(t) = I0 cosωt

A circuit with such a current is referred to as an alternating current
circuit, or AC circuit, because the current alternates directions in the
circuit. In contrast a circuit with constant current is referred to as a
direct current circuit, or DC circuit.

§ 6.6 AC Power and RMS Voltage

The electrical power supplied by the power company is sinusoidal.
The electric potential between the two sockets of an electrical outlet is
oscillating.

V (t) = V0 cosωt

The voltage supplied in the U.S. is said to be 120 volts. If you examine
the underside of an electrical appliance there will be printed something
like

60Hz - 120V - 7.0AMPS
someplace near the UL listing mark. As you may have guessed the first
mark indicate that the appliance is designed to operate on AC power
that has a frequency of 60Hz. You might expect that the amplitude of
the supplied electric potential, V0, would be 120V, and the amplitude
of the current drawn by the appliance, I0, would be 7.0AMPS. This
is not quite correct. These numbers are not the amplitudes but the
amplitudes divided by

√
2, so that the actual amplitudes are greater

by a factor of
√

2 than these values marked on the appliance. Thus V0 =
(120V)

√
2 = 170V and I0 = (7.0A)

√
2=9.9A. In order to understand

why this is so we need to consider the power dissipated in the appliance.
Recall that power is the product of the voltage and the current.

Suppose for simplicity that the appliance that we are using is a toaster.
This is simple because, as an electrical circuit, a toaster is simply a
resistor. So our entire system, including the AC source, is diagramed
as follows.
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+
VS
–

R

Because the current oscillates in time, the power dissipated in the re-
sistor also oscillates in time.

P (t) = I(t)V (t)
= I(t)I(t)R

= [I(t)]2R

= [I0 cosωt]2R

= I2
0R cos2 ωt

Notice that the power oscillates between zero and I2
0R so that the

average power supplied to the toaster is 1
2I

2
0R.

Pavg =
I2
0R

2
=

I0√
2
I0R√

2
=

I0√
2
V0√

2
= (7.0A)(120V)

Notice that for a sinusoidal signal the root mean square (RMS) value is
the amplitude divided by

√
2. Thus we can learn two things from this

example. First, the values that are printed on the toaster are the RMS
values. Second, the product of the RMS current and RMS voltage gives
the average power. So in this example the average power consumed by
the appliance is P = (7.0A)(120V) = 840W.

. Problem 6.4

A 60 watt light bulb has an average power output of 60 watts.
(a) What is the peak power?
(b) What is the resistance of the bulb?
(c) Is this resistance the same as the resistance that is required to
dissipate 60 watts when connected to a 120 volt DC source?

§ 6.7 AC Circuit Elements

In many ways an AC circuit can be analyzed using the same tech-
niques we used for DC circuits. In fact inductors and capacitors become
as simple as resistors. In an AC circuit, inductors and capacitors
follow an adapted Ohm’s Law: the amplitude of the voltage on the
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element is proportional to the amplitude of the current through the
element, V = ZI, just like a resistor. The proportionality constant Z
is called the impedance.

Let us see how this works for an inductor.
Suppose that the current through an inductor is I(t) = I0 cosωt.

Then we know that the EMF (VL) on the inductor is

VL = L
dI

dt
= −ωLI0 sinωt

So that the amplitude of the voltage oscillation is ωLI0.
VL0 = ωLI0 = ZLI0 with ZL ≡ ωL

So we see that the amplitudes of the voltage and current are propor-
tional. The constant ZL = ωL is the equivalent of the resistance for an
inductor.

Theorem: Impedance: Inductor
In an AC circuit the amplitude of the voltage on an inductor is
proportional to the amplitude of the current flowing through the
inductor.

VL0 = ZLI0 with ZL ≡ ωL

The impedance of an inductor is ZL = ωL.

The actual voltage and current are not proportional, since one is
a sine function and the other is the cosine function.

VL

The voltage on an inductor reaches the peak value one quarter of a cycle
before the current does. For this reason the voltage on an inductor in
an AC circuit is said to lead the current by a phase of 90◦.

A capacitor is similar.

VC =
1
C
Q =

1
C

∫
Idt =

1
ωC

I0 sinωt

So that the amplitude of the voltage oscillation is 1
ωC I0.

VC0 =
1
ωC

I0 = ZCI0 with ZC ≡
1
ωC

So we see that the amplitudes of the voltage and current are propor-
tional. The constant ZC = 1

ωC is the equivalent of the resistance for
an capacitor.
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Theorem: Impedance: Capacitor
In an AC circuit the amplitude of the voltage on a capacitor is
proportional to the amplitude of the current flowing through the
capacitor.

VC0 = ZCI0 with ZC ≡
1
ωC

The impedance of an capacitor is ZC = 1
ωC .

The voltage on a capacitor reaches the peak value one quarter of a cycle
after the current does. For this reason the voltage on a capacitor in an
AC circuit is said to follow the current by a phase of 90◦.

§ 6.8 Phasor Diagrams

This relationship between the leading and following phases is often
represented in a phasor diagraph. As you may recall an oscillation can
be thought of as the horizontal component of a circular motion. So we
can represent the current or voltage in and AC circuit as the horizontal
component of a circular motion.

The current is represented as a vector with constant length I0 that is
rotating in the counter clockwise direction. The real physical current
is the projection of this vector onto the horizontal (Re) axis.

One thing that is very nice about the phasor representation is that
it allows us to clearly represent in a diagram the phase relationship be-
tween different quantities. Let us take the leading phase of the inductor
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voltage as an example. The fact that the inductor voltage is one quar-
ter of a cycle ahead of the current, means that the inductor voltage
phasor is 90◦ ahead of the current phasor.

If you imagine the phasors rotating you can see that the projection of
the voltage, onto the horizontal axis, will reach a peak one quarter of
a cycle before the projection of the current reaches its peak.

Here is the phasor diagram for a capacitor.

At this point the phasor diagram has only allowed us to represent
what we already know. The phasor diagram is far more useful. For
example the phasor diagram will alow us to use Kirchhoffs loop rule
for AC circuits, as we will see in the following example. The idea of a
phasor is useful in many areas of physics and engineering. We will see
more examples in the next chapter.

E
x
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l
e Suppose that we have a capacitor and a resistor in series. What is the

effective impedance of the combination. First imagine that we connect
the combination to an AC source.

+
VS
– R

C
–

+

–

+

VC

VR
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What we want to find is the ratio of the amplitude of the supply voltage
and the amplitude of the current: VS0/I0.

Kirchhoff’s loop rule gives us that
VS(t)− VC(t)− VR(t) = 0 −→ VS(t) = VC(t) + VR(t)

In the phasor diagram this implies that the sum of the phasors for VC
and VR must be equal to the phasor of the source voltage VS . Since
the resistor phasor is parallel to the current phasor we know that the
phasors for VC must follow the phasor for VR by 90◦. Thus the sum
(also VS) forms the hypotenuse of a right triangle.

We can find the phasor for the sum of the voltage on the resistor and
capacitor by adding the individual phasors like we add vectors. Also
notice from the circuit diagram that the sum of the voltages on the
resistor and capacitor is equal to the voltage on the supply: VS =
VR + VC .

Since the lengths of the phasors are the amplitudes of the voltages we
can use the pythagorian theorem to find that

V 2
S0

= V 2
R0

+ V 2
C0

= (RI0)2 + (ZCI0)2

−→
V 2
S0

I2
0

= R2 + Z2
C

−→ Zeff =
VS0

I0
=
√
R2 + Z2

C =

√
R2 +

1
(ωC)2

We see that the impedances do not simply add when the components
are in series. In this case the square of the impedance was the sum of
the squares of parts. This is not a general rule. We can also find the
phase angle (φ) between the supply voltage and the current.

tanφ =
−VC0

VR0

=
−ZCI0
RI0

=
−ZC
R

=
−1
ωRC

There is a very significant difference between the resistance of a
resistor and the impedance of a capacitor or inductor: the impedance
depends on the frequency. In the previous example we see that the
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effective impedance of the system depends on ω. This can be a useful
property, since sometimes we wish to treat different frequencies dif-
ferently. For example in an audio system, there are big speakers for
low frequencies and small speakers for high frequencies, but the signal
coming from the amplifier to the speakers contains both high and low
frequencies. Let us see how we can use a capacitor and resistor is series
to split the signal so that the appropriate signal goes to each speaker.

E
x
a
m

p
l
e For the circuit in the previous example, let us find the voltage on the

capacitor and resistor relative to the voltage from the source.

GR(ω) ≡ VR0

VS0

=
VR0/I0
VS0/I0

=
R√

R2 + 1/(ωC)2
=

1√
1 + 1/(ωRC)2

GC(ω) ≡ VC0

VS0

=
VC0/I0
VS0/I0

=
1/ωC√

R2 + 1/(ωC)2
=

1√
(ωRC)2 + 1

These ratios are called the gain.

So we see that the voltage on the capacitor is equal the the source
voltage at low frequencies and drops to zero at high frequencies, while
the voltage on the resistor does just the reverse. So we see that the
signal from the source is sorted by this circuit, high frequencies to the
capacitor and low frequencies to the resistor. Thus we can send the
voltage from the capacitor to the large speakers and the voltage from
the resistor to the small speakers.

. Problem 6.5

Suppose that you build a RL circuit instead of the RC, that is you
replace the capacitor with an inductor in the previous example.
(a) Find the gain for the resistor and inductor.
(b) Graph the gain for the resistor and inductor.
(c) Which will pass low frequencies better than high frequencies.
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. Problem 6.6

Show that this LRC circuit has a max-
imum current when ω =

√
1
LC . This is

called the resonance frequency.
+
VS
–

R

C

L

§ 6.9 Homework

. Problem 6.7

Consider the hemispherical closed sur-
face of radius R as shown . If the hemisphere
is in a uniform magnetic field that makes an
angle θ with the vertical, calculate the mag-
netic flux through the flat surface S1. Calcu-
late the flux through the hemisphical surface
S2.

θ
S

1

S
2

B

. Problem 6.8

A powerful electromagnet has a field of 1.6T and a cross-sectional area
of 0.20m2. If we place a coil having 200 turns and a total resistance
of 20Ω around the electromagnet and then turn off the power to the
electromagnet in 20ms, what is the current induced in the coil?

. Problem 6.9

A rectangular loop of area A is placed in a region where the magnetic
field is perpendicular to the plane of the loop. The magnitude of the
field is allowed to vary in time according to B = Boe

−t/τ . What is the
induced emf as a function of time?

. Problem 6.10

A long, straight wire carries a current
I = Io sin(ωt+δ) and lies in the plane of a rect-
angular loop of N turns as shown. Determine
the emf induced in the loop by the magnetic
field of the wire.

a

I

b

c

. Problem 6.11
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A magnetic field directed into the page changes
with time according to B = at2 + b. The field has
a circular cross-section of radius R. What are the
magnitude and direction of the electric field at a
distance r from the center of the field.

R

. Problem 6.12

For the situation in the previous problem if B = (2.0t3−4.0t2 +0.80)T
and R = 2.5cm. Calculate the magnitude and direction of the force
exerted on an electron located at a distance r = 2R from the center of
the field at the time t = 2.0s.

. Problem 6.13

A circular coil enclosing an area of 100cm2 is made of 200 turns of
copper wire. Initially a 1.10T uniform magnetic field points perpen-
dicularly upward through the plane of the coil. The direction of the
field then reverses. During the time the field is changing its direction,
how much charge flows through the coil if the resistance of the coil is
R = 5.0Ω.

. Problem 6.14

The rotating loop in an ac generator is a square 10cm on a side. It
is rotated at 60 Hz in a uniform field of 0.80T. Calculate (a) the flux
through the loop as a function of time, (b) the emf induced in the loop,
(c) the current induced in the loop for a loop resistance of 1.0Ω, (d) the
power dissipated in the loop, and (e) the torque that must be exerted
to rotate the loop.

. Problem 6.15

A solenoid has n turns per unit length, radius a and carries a current
I.

a
a

b
c

Long Solenoid

Large loop of wire

Small loop of wire

(a) A large circular loop of radius b > a and N turns encircles the
solenoid at a point far away from from the ends of the solenoid. Find
the magnetic flux through the loop.
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(b) A small circular loop of N turns and radius c < b is completely
inside the solenoid, far from its ends, with its axis parallel to that of
the solenoid. Find the magnetic flux through this small loop.

. Problem 6.16

The two circular loops shown below have their planes parallel to each
other.

I

A B

As viewed from A toward B, there is a counter-clockwise current in loop
A. Give the direction of the induced current in loop B and determine
whether the loops attract or repel each other if the current in loop A
is (a) increasing and (b) decreasing.

. Problem 6.17

A bar magnet moves with constant velocity along the axis of a loop as
shown in the figure below.

B

S N
v0

(a) Make a qualitative graph of the flux φB through the loop as a
function of time. Indicate the time t1 when the magnet is halfway
throught the loop.
(b) Sketch a graph of the current I in the loop versus time, choosing I
to be positive when it is counterclockwise as viewed from the left.

. Problem 6.18

Given the circuit below, assume that the switch S has been closed for
a long time so that steady state currents exist in the circuit.

10 Ω

100 Ω 2 Η

10 V

S
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Ignore any resistance of the inductor L. (a) Find the battery current,
the current in the 100 Ω resistor, and the current through the inductor.
(b) Find the intial voltage across the inductor when switch S is opened.
(c) Give the current as a function of time measured from the instant
of opening the switch S.

. Problem 6.19

A 2.00H inductor carries a steady current of 0.500A. When the switch
in the circuit is thrown open, the current disappears in 10ms. What is
the average induced emf in the inductor during this time?

. Problem 6.20

A coiled telephone cord has 70 turns, a cross sectional diameter of 1.3
cm, and an unstretched length of 60 cm. Determine an approximate
value for the self inductance of the unstretched cord.

. Problem 6.21

A 10.0mH inductor carries a current I = Imax sinωt, with Imax = 5.00A
and ω/2π = 60.0Hz. What is the back emf as a function of time?

. Problem 6.22

The switch in the circuit below is closed at time t = 0. Find the current
in the inductor and the current through the switch as functions of time
if V = 10.0V, R = 4.00Ω and L = 1.00H.

R 2R

R LV

S

. Problem 6.23

Show that I = I0e
−t/τ is a solution of the differential equation

IR+ L
dI

dt
= 0

where τ = L/R and I0 is the current at t = 0.
. Problem 6.24

An air-coil solenoid with 68 turns is 8.0 cm long and has a diameter of
1.2 cm. How much energy is stored in its magnetic field when it carries
a current of 0.77A.

. Problem 6.25

The switch in the circuit below is connected to point a for a long time.
After the switch is thrown to point b find (a) the frequency of oscillation
in the LC circuit, (b) the maximum charge on the capacitor, (c) the
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maximum current in the inductor, and (d) the total energy stored in
the circuit at time t.

R

C LV

S
a b

. Problem 6.26

Show that the rms voltage of the pictured “sawtooth” wave is V0/
√

3.
V

t

Vo

-Vo

. Problem 6.27

What is the resistance of a light bulb that uses an average power of 75W
when connected to a 60Hz power source having a maximum voltage of
170 V? What is the resistance of a 100W bulb?

. Problem 6.28

An inductor has an AC current of frequency 50Hz passing through
it. The maximum voltage is 100V and the maximum current is 7.5A.
What is the inductance of the inductor? The frequency is now changed
to ωnew while the voltage is held constant. The maximum current is
now 2.5A. What is the angular frequency ωnew?

. Problem 6.29

A 1.0mF capacitor is connected to a standard wall outlet. Determine
the current in the capacitor at t = (1/180)s, assuming that at t = 0
the energy stored on the capacitor is zero.

. Problem 6.30

For what linear frequencies does a 22.0µF capacitor have a impedance
below 175Ω? Over this same frequency range , what is the impedance
of a 44.0µF?

. Problem 6.31

A sinusoidal voltage v(t) = Vmax cosωt is applied to a capacitor. Write
an expression for the instantaneous charge on the capacitor. What is
the instantaneous current in the circuit?

. Problem 6.32

At what frequency does the inductive impedance of a 57µH inductor
equal the capacitive impedance of a 57µF capacitor.
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. Problem 6.33

A series AC circuit contains the following components: R = 150Ω, L =
250mH, C = 2.00µF, and a generator with Vmax = 120V operating at
50.0Hz. Calculate the (a) inductive impedance, (b) capacitive impedance,
(c) impedance, (d) maximum current, and (e) phase angle.

. Problem 6.34

An RLC circuit consists of a 150Ω resistor, a 21µF capacitor, and a
460mH inductor, connected in series with a 120V, 60Hz function gen-
erator. What is the phase angle between the current and the applied
voltage? Which reaches its maximum earlier, the current or the volt-
age?

. Problem 6.35

Calculate the resonance frequency of a series RLC circuit for which
C = 8.40µF and L = 120mH.

. Problem 6.36

An RLC circuit is used in a radio to tune into an FM station broad-
casting at 99.7MHz. The resistance in the circuit is 12.0Ω, and the
inductance is 1.40µH. What capacitance should be used?
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§ 6.10 Summary

Definitions

Facts

Theorems

Ampere’s Law:∮
~B · ~d` = µ0

∫
~J · ~dA+ µ0ε0

d

dt

∫
~E · ~dA

Faraday’s Law: ∮
~E · ~d` = − d

dt

∫
~B · ~dA

AC Circuits

Capacitor: The phase of the voltage across a capacitor is 90◦behind
the phase of the current through the capacitor. The amplitude of the
voltage and current are related as follows.

VC0 =
1
ωC

IC0

Inductor: The phase of the voltage across an inductor is 90◦ ahead
of the phase of the current through the inductor. The amplitude of the
voltage and current are related as follows.

VL0 = ωL IL0
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7 Wave Optics

§ 7.1 Maxwell Equations

Let us write down, in one place, all of the fundamental equations
about the electric and magnetic fields.

Gauss′s Law
∮

~E · ~dA =
1
ε0

∫
ρ dV

Faraday′s Law
∮

~E · ~d` = − d

dt

∫
~B · ~dA

Ampere′s Law
∮

~B · ~d` = µ0

∫
~J · ~dA+ µ0ε0

d

dt

∫
~E · ~dA

Gauss′s Law for B
∮

~B · ~dA = 0

These equations as a group are known as the Maxwell Equations.
The last equation, which we have not discussed before, can be

understood to say that there is no magnetic equivalent to the electric
charge. That is, that there are no magnetic charges, places where
magnetic field lines begin or end, thus that magnetic field lines do not
end. If you want to think of the magnetic field as a flowing fluid, with
B the velocity of the fluid, then this law says that the fluid does not
compress: B flows like water, when it spreads out the velocity decreases,
when it goes through a narrow region it speeds up, the volume rate of
flow is a constant.

Ok, so the new law tells us that there are no magnetic charge, let
us see what the Maxwell equations look like in a region where there is
no electric charge (ρ = 0) and no current (J = 0).
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Gauss′s Law
∮

~E · ~dA = 0

Faraday′s Law
∮

~E · ~d` = − d

dt

∫
~B · ~dA

Ampere′s Law
∮

~B · ~d` = µ0ε0
d

dt

∫
~E · ~dA

a new Law
∮

~B · ~dA = 0

You can see that the equations are essentially the same in E and B.
Investigating these equations led Maxwell to discover that in regions
where there is no current or charge that there can be traveling waves
as pictured below.

E

E

B
B

E

E

B
B

E

E

B
B

E

E

B
B

E

E

B
B

x

y

z

tim
e increasing

What is drawn is the magnetic field and electric field at various posi-
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tions along the z-axis. Notice that the magnitude of the field oscillates,
as one moves along the z-axis. This pattern of spacial oscillations of
the field, travels to the right along the axis as time passes. Also notice
that E and B are perpendicular, and that the direction of travel is
perpendicular to both E and B.

Maxwell also found that the equations predict the velocity at which
these electromagnetic waves travel.

vEM =
√

1
µ0ε0

From the known values of µ0 and ε0, Maxwell computed that the ve-
locity of these EM waves is the same as the velocity of light. He
concluded, rightly, that light and electromagnetic waves are the same
thing. This was a huge leap in our understanding of light.

Fact: Electromagnetic Waves and Light
Light is an electromagnetic wave.

. Problem 7.1

Show that 1/
√
µ0ε0 = c.

§ 7.2 Describing Oscillations
We need some terminology to make it easier to talk about sinu-

soidal waves and oscillations. The central idea of a wave is encapsulated
in the term phase of an oscillation. The word phase is used here in the
same way as the word is used to describe the cycle of the moon: new
moon, waxing crescent, first quarter, full moon, etc.

In a system with a periodic cycle, the phase of the system describes
what point in the cycle the system is currently occupying.

Recall from the section on AC circuits that we can describe a
sinusoidal oscillation as the horizontal component of a rotation. Thus
the phase of a sinusoidal oscillation can be described by giving the angle
of rotation, φ. When the phase is φ = 0, the oscillation is at its greatest
positive extension. When the phase is φ = π/2 the oscillation is at zero
and with a negative velocity. When the phase is φ = π the oscillation
is at its greatest negative extension. When the phase is φ = 3π/2 the
oscillation is zero but with a positive velocity. These and other phases
of an oscillation are depicted in the figure below.
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0-A A

φ = 0

φ = π/4

φ = 2π/4

φ = 3π/4

φ = 4π/4

φ = 5π/4

φ = 6π/4

φ = 7π/4

φ = 8π/4

The actual value of the displacement (x) is the amplitude of the oscil-
lation times the cosine of the phase angle.

Displacement = Amplitude× cosφ

x = A cosφ
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For a harmonic oscillator the phase increases at a constant rate:
dφ

dt
= ω −→ φ = ωt+ φ0

and so the displacement is
x = A cos(ωt+ φ0)

. Problem 7.2

An oscillator has an amplitude of 3.2. At this instant the displacement
of the oscillator is 1.4. What are the two possible phases of the oscillator
at this instant?

. Problem 7.3

You have a mass connected to a spring.
0 x

You start the mass oscillating in the following ways. What is the initial
phase φ0 in each case.
(a) Stretch the spring to the right, at t = 0 release the mass.
(b) Compress the spring to the left, at t = 0 release the mass.
(c) At t = 0 strike the mass so that it begins moving to the left.
(d) At t = 0 strike the mass so that it begins moving to the right.
(e) At t = 0 the mass is at the position x0 = 2.0m and has a velocity
of v0 = 3.0m

s (assume that ω = 5.0 rad
s ).

. Problem 7.4

It takes a time of T = 0.025s in order for an oscillator to complete one
cycle. What is the angular frequency (ω) of the oscillator?

§ 7.3 Describing Waves

Consider dropping a rock into a pool of still water. Ripples spread
out from the point at which the rock enters the water. If you examine
the motion of the water at one fixed point, the surface of the water
moves up and down as successive waves move past. The height of
the water at our fixed point is an oscillation. This is true at other
points a well, at each location the height of the water oscillates. Since
an oscillation is so simple, the only thing that can differ between one
point and another is the amplitude of the oscillation and the initial
phase φ0. Let us write the height of the water, at position ~r and time
t, as y(~r, t). Since the oscillation at each point is a harmonic oscillation
we can write:

y(r, t) = A(~r) cos [ωt+ φ0(~r)]
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Where the amplitude A(~r) and initial phase φ0(~r) both depend on the
position ~r.

In the situation where the wave spreads out from a point source
(such as a rock dropped in the water), the wave travels outward at a
speed v. Because of this, the oscillation at a distance r from the source
will be the same as the oscillation of the source, only delayed by the
time (td = r/v) it takes for the wave to travel the distance r from
the source to the observation point. Thus the phase of the oscillation
at a position r at a time t + td, will be the same as the phase of the
oscillation at the source (r = 0) at time t.

φ(r, t+ td) = φ(0, t)
ω(t+ td) + φ0(r) = ωt+ φ0(0)

φ0(r) = φ0(0)− ωtd
φ0(r) = φ0(0)− ω r

v

φ0(r) = φ0(0)− kr with k ≡ ω

v

For convenience we usually pick our zero of time so that φ0(0) = 0,
so that φ0(r) = −kr and y(r, t) = A(r) cos(ωt− kr).

Theorem: Wave due to a Sinusoidal Point Source
A general wave radiating from a point source can be written down
mathematically as follows:

ψ(r, t) = A(r) cos (ωt− kr)

= A(r) cos
(

2π
T
t− 2π

λ
x

)
where k = ω/v and T ≡ 2π

ω and λ ≡ 2π
k are the period and

wavelength as described below.

Definition: Wavelength
If you freeze a sinusoidal wave at one point in time, the distance
you must travel along the wave in order to go through a complete
cycle of the oscillation, is called the wavelength. We use the symbol
λ to represent the wavelength in equations.

ψ
xλ
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Definition: Period and Frequency
If you stand in one place and allow the wave to pass you, the
time you must wait in order to be back at the same point in the
oscillation as when you started is called the period. We use the
symbol T to represent the period in equations.

ψ
tT

The frequency is the inverse of the period.

f =
1
T

Note that the angular frequency is ω = 2πf . Both frequencies are
really the same thing, they both measure the rate of the oscillation, it
is just that one is in the units of radians and the other is in the units
of cycles. So you can convert between units by using the fact that one
cycle is 2π radians: ω = radians

seconds = radians
cycle

cycles
seconds = 2π f .

Notice that the realtionship between the angular frequency and the
wave number can be rewritten in terms of the wavelength and period.

k =
ω

v
−→ 2π/λ =

2π/T
v

−→ λ = vT

So we can also think of the wavelength as the distance the wave travels
in one period, or writing the equation as T = λ/v, we can think of the
period as the time it takes to travel one wavelength.

Let us summarize the relationships between the different parame-
ters that describe a wave.

Time scale:
ω =

2π
T

= 2πf

Length scale:

k =
2π
λ

Relationship between time and length scales:

k =
ω

v
OR λ = vT OR λf = v
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. Problem 7.5

For the following wave, graphed at seven different times, determine
the amplitude, wavelength, period, frequency, angular frequency, wave
number, and velocity. Write the function y(x, t) that describes the
wave.
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§ 7.4 Electromagnetic Waves
With our eyes we are able to see electromagnetic (EM) waves that

have wavelengths between about 400nm to 700nm. We experience light
with different wavelengths as different colors, as indicated in the fol-
lowing table.

Wavelength Frequency Perceived Color
740 to 625 nm 405 to 480 THz red
625 to 590 nm 480 to 510 THz orange
590 to 565 nm 510 to 530 THz yellow
565 to 520 nm 530 to 580 THz green
520 to 500 nm 580 to 600 THz cyan
500 to 430 nm 600 to 700 THz blue
430 to 380 nm 700 to 790 THz violet

Note that the frequency and wavelength of an EM wave are related by
λf = c where c is the speed of light.

But this is only a small range of EM spectrum.

We see that there are a number of familiar items in the spectrum: x-
rays, microwaves, and radio waves are all EM waves. The range of
the spectrum just above and just below the visible range are called the
ultraviolet (UV) and infrared (IR). The prefixes ultra (above) and infra
(below) refer to the frequency not the wavelength.

. Problem 7.6

Your microwave oven is filled with EM waves with a frequency of about
3 GHz. What is the wavelength of the wave? The microwave oven heats
up the objects in the oven, because the oscillating EM wave causes an
oscillating electric force on the electric dipoles in the object, which
causes the dipoles to oscillate. The frequency of a standard microwave
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oven is tuned to a natural oscillation frequency of the water molecule.
Note that a cellular phone uses about the same frequency as an oven, a
cellular phone is a small microwave emitter, so you are slowly cooking
your brain when you hold the phone to your head.

. Problem 7.7

Compute the wavelength of an FM radio station that transmits at a
frequency of 94.1 MHz.

§ 7.5 Interference of Waves

We have claimed that light is an EM wave because it has the same
speed as an EM wave. We have not looked at the consequences of
the fact that light is a wave. One of the principle characteristics of
waves is their ability to interfere with each other when two or more of
the waves are combined. The following example will demonstrate this
interference.

Consider the follow situation. You have a point source of waves,
and near this source you have a reflecting surface.

Source

Detector

Reflecting Surface

The wave arrives at the detector by two different paths, a direct path
and a reflected path. The wave travels a distance r1 along the direct
path and a distance r2 along the reflected path. If the reflected path
was blocked the oscillation at the detector would be just that due to the
direct path, ψ1(t) = A1 cos(ωt+ φ1) where φ1 = −kr1. Similarly if the
direct path is blocked the oscillation at the detector would be just that
due to the reflected path, ψ2(t) = A2 cos(ωt + φ2) where φ2 = −kr2.
When both paths are open then the resultant wave at the detector will
be the sum of the waves from each path

ψ(t) = ψ1(t) + ψ2(t)
= A1 cos(ωt+ φ1) +A2 cos(ωt+ φ2)

Using the phasor diagram for these two oscillations we can find the
amplitude of their sum.
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A1

φ1

φ2

ℜ

ℑ

A1

A2
φ2 - φ1

ℜ

ℑ

A

A2

The law of cosines gives the amplitude, A, in terms of the amplitudes
A1 and A2.

A2 = A2
1 +A2

2 + 2A1A2 cos(φ2 − φ1)

Theorem: Addition of Two Waves
If two waves (with the same frequency) come together at a detector,
the amplitude A of the resultant wave at the detector will be as
follows.

A2 = A2
1 +A2

2 + 2A1A2 cos(φ2 − φ1)

In general the power carried by a wave is proportional to the square
of the amplitude of the wave, so this result can be rewritten in
terms of the power.

P = P1 + P2 + 2
√
P 1

√
P 2 cos(φ2 − φ1)

Below is graphed the power at a detector where two waves come
together, The power of one wave is 25 mW and the power of the other
waves is 4 mW.

φ2- φ1

P (mW)

0 π 2π 3π 4π
Notice the following points:
• The power at the detector can be less with both sources on than with
just one of them on.
• The maximum power occurs when the phase difference is an even
multiple of π. The waves as said to be perfectly in-phase.
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• The minimum power occurs when the phase difference is an odd
multiple of π. The waves as said to be directly out-of-phase.
• When the phase difference is an odd multiple of π/2, the power is
equal to the sum of the powers of the individual signals.

. Problem 7.8

Suppose that you are at home talking on your wireless phone, and you
walk near your refrigerator. Since the refrigerator is made of metal
it acts as a reflector for the microwave signal going to and from your
phone. Because of this there are two paths between your phone and
the transceiver (the base that phone sits in) that it is communicating
with.

Phone

Transceiver

Refrigerator

x

When you are a distance x from the refrigerator the signal that reflects
from the refrigerator must travel a distance 2x further. Assuming that
the reflected amplitude is one half of the direct amplitude, graph the
power of the signal as a function of your distance from the refrigerator.
Assume that the wavelength of the signal is 10cm. Are there places
that it would be better to avoid?

§ 7.6 Interferometer

It is possible to build a device that measures very small motions
by using interference.

The device represented in the diagram below is called an interfer-
ometer.
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Source

Detector

Mirror B

Mirror A Half-silvered 
mirror

A beam of light strikes a half-silvered mirror. The half silvered mirror
reflects half of the wave toward mirror A and transmits the other half
toward mirror B. The part that strikes mirror A, is reflected back (to
the right) toward the half-silvered mirror where it is again split, half
passing through to the detector on the left and half being reflected back
toward the source. The part of the beam that strikes mirror B is also
split so that half reaches the detector.

So we see that there are two path by which light can reach the
detector, one path that has been reflected from mirror A, and another
path that has been reflected from mirror B. By adjusting the location
of mirror A we can adjust the path length of the light. In this way
the relative phase of path A and B can be adjusted. Suppose that we
have adjusted the path length so that the power at the detector is a
maximum. Then φA − φB is an even multiple of π.

Now suppose that we move mirror A a distance of λ
4 to the left.

This will increase the path length of by ∆rA = 2λ4 = λ
2 since the path

includes the extra bit of length twice, once on the way to the mirror and
once on the way back from the mirror. But a change in the path length
of ∆rA will change the phase by −k∆rA = − 2π

λ
λ
2 = −π. Thus φA−φB

is now an odd multiple of π, and the power will be at a minimum. By
observing the intensity of the light at the detector we can easily tell if
it has gone from bright to dim (maximum to minimum). Thus we can
easily detect when the mirror has been moved by λ/4. A common laser
pointer has a wavelength of something like 650nm so one quarter of this
is 162nm. So an interferometer can be used as a “ruler” with markings
about 162nm apart. This is a very small distance, for comparison, the
finest human hair is about 20,000 nm in diameter.
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§ 7.7 Interference of Two Sources

Suppose that we have two wave sources that are in phase with each
other.

Source A

Detector

Source B

rA

rB

While the sources are in phase, the waves are not when they reach the
detector because they must travel a different distance: at the detector
the phase difference between the waves will be φA−φB = k(rB−rA) =
k ∆r = 2π∆r

λ . The minimum and maximum power occur when this
phase difference is an odd and even multiple of π. That is when

2π
∆r
λ

= mπ
{max m is even.

min m is odd

∆r = m
λ

2

{max m is even.
min m is odd

Theorem: Interference of Two Sources
If you have two wave sources that are in phase with each other,
the minimum and maximum of the power occur at points where
the path difference is and odd (min) or even (max) multiple of half
of the wavelength of the wave.

∆r = m
λ

2

{max m is even.
min m is odd

. Problem 7.9

Draw two points that are 3 cm apart on a piece of paper.
(a) Find all points on the paper that have ∆r = 0.
(b) Find all points on the paper that have ∆r = 1cm.
(c) Find all points on the paper that have ∆r = 2cm.
(d) If λ = 1.0cm what are the locations of the maximum and minimum
of power?
(e) If λ = 2.0cm what are the locations of the maximum and minimum
of power?
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§ 7.8 Far Field Approximation

In most cases the detector is placed far from the two sources, far
in the sense that the distance from the sources to the detector r is
much bigger than the distance between the sources, d. There is a
useful approximation for the path difference that can be used when the
detector is far from the source.

First consider the case when the detec-
tor is not far, as pictured in the figure to
the right. Notice that if we make of a sec-
tion of arc, with the center at the detector,
and going through the closest source, and
then consider the section of the path from
the furthest source that is cut off by this
arc. This cut off section (marked as ∆r in
the figure) is equal to the path difference.
Also notice that the arc is perpendicular to
the path.

Δr

Detector

Source

Source

Now imagine moving the detector further from the sources, as
pictured in the diagram below. The section of arc that is between the
two paths, subtends a smaller and smaller angle, and thus this section
of arc becomes closer and closer to a straight line. At the same time
the grey region becomes a right triangle.

θ

Let us examining this right triangle
more closely. We see from the diagram
to the right that

sin θ =
∆r
d
−→ ∆r = d sin θ

This is a very useful result, that allows
us to find the path difference from the
distance between the sources and the an-
gle to the detector.

θ

Δr
θ

d

Combining this with our previous result, ∆r = mλ
2 , we find the
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angles for the minima and maxima.

d sin θm = m
λ

2

{max m is even.
min m is odd

. Problem 7.10

You set up a sheet of aluminum foil to block a microwave transmit-
ter. You now punch two holes in the foil, so that the microwaves pass
through the holes. The holes are 10 cm apart. You now place a mi-
crowave detector on a track that is parallel to the foil and 3 meters away.
By sliding the detector along the track you observe that the response
of the detector is as shown in the diagram. What is the wavelength of
the microwave?

300 cm

10 cm

Source

Foil with holes

Detector Response
as a function
of position

x

40cm

 0cm

80cm

120cm

§ 7.9 Thin Film Interference
The swirling colors that you see reflected in a

soap bubble and in puddles in a parking lot are a
result of interference. Let us start by considering
the colors in the puddles. The reason that you
only see this in a parking lot is because it only
happens when there is a thin film of oil on the top
of the water. Consider the diagram to the right,
of the layers of a puddle. At the bottom we have
the pavement of the parking lot. Next there is the
pool of water. On top of the water is a thin layer of
oil. The thickness of the oil has been exaggerated
so that we can see what is happening.

Water

Oil t

Pavement

The light from the sun strikes the surface of the oil and some of it
is reflected back toward the detector (your eye). The rest of the light
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passes into the oil, were it proceeds until it reaches the water, at which
point part of the light is reflected back toward the detector. The light
that is not reflected passes into the water and eventually strikes the
pavement, where it is mostly absorbed, since the pavement is black. In
the end then, we have light from the sun reflected into the detector,
by two paths, one path is reflected from the air-oil interface and the
other path is reflected from the oil-water interface. If the light is nearly
normal to the surface the path difference will be twice the thickness of
the oil: ∆r = 2t. The light will be strongly reflected when the two
paths are in-phase, that is when ∆r = mλ

2 with m even. Thus in order
for the light to be strongly reflected we need,

2t = m
λ

2
−→ λ =

4t
m

So only wavelengths that “match” the thickness of the oil will be re-
flected. This is why you see swirling colors, what you are seeing is the
different thicknesses of the oil film, and for each thickness there is a
particular color that gets reflected.

There are a two complications to thin films that we need to con-
sider.

The first complication is that the wavelength of light changes when
it passes into the oil. This is because the light slows down in the oil.

Definition: Index of Refraction
The index of refraction of an optical medium is the ratio of the
speed of light in a vacuum and the speed of light in the medium.

n =
c

v

Let λ be the wavelength in a vacuum, then λf = c. Let λ′ be the
wavelength in the medium, then λ′f = v. Taking the ratio of these two
equations we find

λf

λ′f
=
c

v
= n

Solving for λ′ we find the following result.

Theorem: Wavelength in a Medium

λ′ =
λ

n
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The reason that we care the wavelength has changed, is that when
we use the result that ∆r = mλ

2 we need to use the wavelength where
the path difference ∆r occurs. In the case considered above, the extra
bit of path occurs within the oil, so we need to use the wavelength in
the oil.

In order to understand the root cause of the second complication,
consider a soap bubble again. If you make a soap bubble and watch it
carefully, you will notice that just before it pops, it appears that the top
of the bubble has a hole in it. There is not actually a hole, but the top
of the bubble looks like it has a hole because when the bubble gets very
thin, no light is reflected from the surface of the bubble. Let us consider
what our prediction would be for a very thin bubble. From our work
with the oil film we expect that we will get a maximum reflection when
2t = mλ/2, and m is even. Recall also that m = 0 gives a maximum,
so t ≈ 0 should give a maximum for all wavelengths. Thus we expect
the soap bubble to reflect very well when the film of bubble juice gets
very thin. The truth is just the opposite.

The key to this puzzle is to understand that when a wave is re-
flected it can be inverted, that is the direction of the displacement can
be reversed. But a reversal is the same as a π phase shift.

Fact: Reflection Phase Shift
When a wave is reflected at an interface between two media there
will be a π phase shift in the reflected wave if the index of refraction
of the incident medium is lower than the index of refraction of the
reflecting medium. If the incident medium has a higher index,
there is no phase shift.

. Problem 7.11

Explain using the reflection phase shift why a thin soap bubble reflects
no light.

§ 7.10 Single Slit Diffraction

If a wave is passed through a rectangular hole that is much nar-
rower in one direction than the other we find that we get an interference
pattern like we do with a two source. Such a hole is usually referred to
as a slit since it is so narrow in one direction.
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Source
θ

Central Max

First Min

Second Min

Fact: Single Slit Diffraction
If light is passed through a single slit of width a, then the angle
between the central maximum and the first minimum is given by

a sin θ = λ

§ 7.11 Homework

. Problem 7.12

A pair of speakers is configured as shown, with a microphone placed di-
rectly in front of one of the speakers. Sound waves having a wavelength
10 cm are coming from the speakers. The speakers are in phase with
each other. What is the minimum distance d between the speakers so
that no sound is heard at the microphone labeled P?

d

P

1 m

. Problem 7.13

A material having an index of refraction of 1.30 is used to coat a piece
of glass (n = 1.50). What should be the minimum thickness of this film
to minimize reflection of 500nm light?

. Problem 7.14

A soap bubble of index of refraction 1.33 strongly reflects both the red
and the green components of white light. What film thickness allows
this to happen? (In air, λred = 700nm, λgreen = 500nm.)
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. Problem 7.15

A beam of 560nm light passes through two closely spaced glass plates, as
shown below. For what minimum nonzero value of the plate separation
d is the transmitted power a maximum?

d

. Problem 7.16

A pair of narrow parallel slits separated by 0.25mm is illuminated by
green light (λ = 546.2nm). The interference pattern is observed on a
screen 1.2m away from the plane of the slits. Calculate the distance
from the central maximum to the first bright region on either side of
the central maximum and between the first and second dark bands.

. Problem 7.17

On a day when the speed of sound is 354m
s , a 2000Hz sound wave

impinges on two slits 30.0cm apart. At what angle is the first maximum
located? If the sound wave is replaced by 3.00cm microwaves, what
slit separation gives the same angle for the first maximum? If the
slit separation is 1.00µm, light of what frequency gives the same first
maximum angle?

. Problem 7.18

Two waves with amplitudes y1 = A cos(ωt−kd1+δ) and y2 = A cos(ωt−
kd2) interfere with each other. Prove that the resultant amplitude,
y1 + y2 = y is

y = 2A cos
(
k

2
(d2 − d1) +

δ

2

)
cos
(
ωt− k

2
(d1 + d2) +

δ

2

)
Choose d1 = d2 = 0 and make plots of y1(t), y2(t), and y(t) for δ = π/8,
π/4, π/2, and π.

. Problem 7.19

Two slits are separated by a distance d. Light of wavelength λ comes
from a far distant source and strikes the slits at an angle θ1 as in the
figure below. An interference maximum is formed on a screen that is
far to the right of the slits. The maximum occurs at an angle θ2. Show
that sin θ2 − sin θ1 = mλ/d, where m is an integer.
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θ 1

θ 1

θ 2

θ 2

d

. Problem 7.20

A material having an index of refraction of 1.30 is used to coat a piece
of glass (n = 1.50). What should be the minimum thickness of this film
to minimize reflection of 500nm light?

. Problem 7.21

A soap bubble of index of refraction 1.33 strongly reflects both the red
and the green components of white light. What film thickness allows
this to happen? (In air, λred = 700nm, λgreen = 500nm.)

. Problem 7.22

Light of wavelength 600 nm is used to illuminate, at near zero angle
of incidence, two glass plates that are stacked on top of each other.
At one end the plates are separated slightly because a wire has been
placed between them on this end. The wire is 0.5 mm in diameter.
How many bright fringes appear along the total length of the plates,
when the plates are viewed from the same side as the light source?

. Problem 7.23

The double slit equation d sin θ = mλ and the equation for a single slit
a sin θ = mλ are sometimes confused. For each equation, define the
symbols and explain the equation’s application.

. Problem 7.24

Light from a He-Ne laser (λ = 632.8nm) is incident on a single slit.
What is the minimum width for which no diffraction minima are ob-
served?

. Problem 7.25

A screen is placed 50cm from a single slit, which is illuminated with
690nm light. If the distance between the first and third minima in the
diffraction pattern is 3.0mm, what is the width of the slit?

. Problem 7.26

Light from an argon laser strikes a diffraction grating that has 5310
lines/cm. The central and first order principal maximum are separated
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by 0.488 m on a wall that is 1.72 m from the grating. Determine the
wavelength of the laser light.

. Problem 7.27

Paul Revere received information from a person in a church steeple that
was 1.8 miles away, by the number of lanterns that were displayed:
”One if by land and, two if by sea.” What would be the minimum
separation between two lantern for Paul Revere to be able to distinguish
them? Assume that the diameter of his pupils was 4.00mm and that
the light had a wavelength of about 580nm.

. Problem 7.28

Redo all the problems in the book starting from chapter 1, but add one
to each constant. Add all of the numerical answers and subtract 1 for
each non numerical answer. What number do you get?
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§ 7.12 Summary

Definitions

• Index of refraction: n = c
v

Theorems

• A traveling sinusoidal wave can be represented by
y = A cos(ωt− kx)

where ω = 2π
T and k = 2π

λ .

• For a traveling wave: λf = v.

• Interference of two waves: If two waves are added together with
powers P1 and P2 then the resultant power is

P = P1 + P2 + 2
√
P1P2 cos(φ2 − φ1)

• Maxima and minima of the power occur when ∆φ = φ2 − φ1 is an
even and odd multiple of π, respectively.

• The phase difference due to a path difference is ∆φpath = 2π∆r
λ

• If a field point is far from two sources a distance d apart then the
path difference is ∆r = d sin θ where θ is the angle between the path to
the field point and the normal to the line connecting the two sources.

• When a wave is reflected at an interface between two media there
will be a π phase shift in the reflected wave if the index of refraction of
the incident medium is lower than the that of the reflecting medium.

• The wave length in a medium is longer than in a vaccum: λ′ = λ
n

• If light is passed through a single slit of width a, then the angle
between the central maximum and the first minimum is given by,

a sin θ = λ
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8 Geometric Optics

§ 8.1 Short Wavelength Limit
In the last section we saw the wave nature of light in the sections

where we considered interference. In many situations these interference
effects are small enough to be ignored. For example if light comes in
through two windows in your house you will not find an unexpected
dark spots in the room where the light from the two windows combines.

Fact: Short Wavelength Limit
When the wavelength of the light is much shorter than the size
of the objects that the light is traveling through, then the wave
nature of the light can be ignored.

For example if you set up a candle and cast shadow of your hand
on the wall, the shadow is a faithful replica of your hand, there is no
interference pattern developed because of the interference between the
light going between different fingers.

In this short wavelength limit we can think of a light source as sending
out rays of light that continue in a straight line unless something stops
them. Because of this use of straight lines, this way of dealing with
light is called Geometric Optics or Ray Optics.

. Problem 8.1

In the photograph below (by Colleen Pinski) can be seen a person,
the sun and the moon. Estimate the distance between the camera that
took the photo by assuming a height for the person and using the know
diameter of and distance to the moon.
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§ 8.2 Reflection

Now consider what happens when a ray of light strikes a mirror.

Mirror

θi θr

Fact: Law of reflection
The incident and reflected angles are the same.

θi = θr

§ 8.3 Virtual Image

Let us draw some of the other rays that come from the source.

Notice that each ray obeys the law of reflection. This may look
a little confusing, but if we trace the reflected ray back through the
mirror, we see that they all converge on the same point.
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Object

Virtual Image

We see then that from the point of view of an observer of the reflected
rays, it appears that the object is really behind the mirror, because all
of the rays appear to come from that one point. Our brain makes the
simplest conclusions and assumes that the rays come in a straight line,
not in the bent line that they actually followed.

This type of image is called a virtual image of the object since the
light does not actually come from the image. We will see later, ways
in which it is possible to construct a real image.

§ 8.4 Snell’s Law

When a ray of light strikes an interface between two different me-
dia, some of the light is reflected, and some of the light is transmitted
through the interface.

θi θr

θt

ni
nt

Note that both the reflected and transmitted beams are deflected from
their original direction. The angle at which the transmitted ray leaves
the interface is given by Snell’s Law.
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Fact: Snell’s Law

nt sin θt = ni sin θi

We can use Snell’s law to explain a strange phenomenon that you
may have noticed. If you view a fish tank from the corner, you can see
objects in the tank through the front glass and the side glass at the
same time. This is because of the bending of the light when it leaves
the water. The effect is depicted in the diagram below.

Eye

Front

Side

Tank

Front View

Side
ViewBoth

 View

The dark grey region is the part of the tank that can be seen from both
the front and the side. You can actually see around the corner. This is
really weird. So if you want a wider view from your window, you could
just fill your room with water. Remember to also install the air tanks.

§ 8.5 Virtual Image Caused by Refraction

Consider a shiny coin on the bottom of a swimming pool.

Air

Water

The light comes up from the coin and out into the air. When the light
comes out it spreads out more. This looks similar to the rays reflected
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from a mirror. This similarity leads one to wonder if there is a virtual
image of the coin, that is, is there a place where all the rays appear to
originate. The following diagram traces the rays back into the water.

Air

Water

We see that they do not converge on a single point. The location of
the image changes as you view it from different angles. When you get
down low and view it from near the horizon the image is close to the
surface of the water and also displaced horizontally from the object.
As you move your view point upward the image moves away from you
and deeper into the water. When you view from straight overhead the
image is directly over the object and about 1/5 of the way up toward
the surface.

Image from horizon

Image from directly above

Image from 45°

Object

Air

Water

This is very different from the image in a flat mirror. The image in a
flat mirror is in the same position, from any viewpoint in the room.

. Problem 8.2

Consider the beam of light shown going through a prism made of glass
with an index of refraction n.
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α

ββ

Show that the net deflection of the beam (2β) is

2β = 2 arcsin(n sin
α

2
)− α

§ 8.6 Thin Lens Equation
Imagine that we take a stack

of prisms as shown in the dia-
gram. Since the prisms farther
from the middle have a steeper
angle they bend the light ray
more sharply. If we pick the an-
gle of each prism correctly all
of the rays will converge on the
same point.

Such a device was used in old light houses in order to focus the
light on the horizon (where there are ships that want to see the light)
rather than letting it spread out and go into the water or into the sky.

Now imagine that you make
the prisms in the middle thicker,
without changing the angle of
the faces. We would now end
up with a smooth curved surface.
Since the angle of faces was not
changed the light would still con-
verge on the single point. You
can see that you get a lens. This
type of lens is called a converg-
ing lens, since it bends the rays
toward each other.

focal
point

focal length

The optical axis of the lens is a line that passes through the center
of the lens, that is normal to the surface of the lens. A focus is a point
where rays converge. The focus of rays that are parallel to the optical
axis is called the principle focus or focal point. The distance between
the lens and the focal point is called the focal length of the lens.

Suppose that you set up your lens at sunrise, so that the rays are
parallel to the optical axis and converge at the focal point. If you come
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back in an hour the sun will have moved up in the sky, and the rays will
no longer be parallel to the optical axis. The rays will still converge at
a point but it will not be the focal point of the lens. The new focus
will be in the focal plane, a plane parallel to the plane of the lens and
one focal length away from the lens.

Focal Plane

Optical Axis

Notice that the ray that passes through the center of the lens is not
deflected. This is a particularly nice ray for doing constructions of
images, as we will see. In this case it allows us to find the location of
the focus, since the focus is at the intersection of this straight line and
the focal plane. Once we have found the focus, using the central ray,
we can draw the other rays, because they must pass though the focus
also.

We can also reverse these diagrams: Light that comes from a point
in the focal plane and strikes the lens leaves the lens parallel to the ray
that passes through the center of the lens.

We have seen what happens to groups of rays that are parallel to
each other. Let us now see what happens to groups of rays that diverge
from a point that is not in the focal plane. Suppose that you have light
radiating from a point. The point is indicated by the fat arrow on
the left, in the following diagram. We follow the light from this point
source to it’s focus.
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In the diagram we are able to draw the three rays that are bolded,
because they are, (top ray) parallel to the optical axis, (middle ray)
through the center, and (bottom ray) through the focal point. These
three rays are called the principle rays. From the three principle rays
(we only needed two really) the location of the focus is determined.
After the location of the focus is determined, the other faint rays are
drawn so that they go through the focus.

Notice that the rays of light actually do pass through the focus. If
we place a piece of paper at that point the paper would be illuminated.
This type of image is called a real image.

xo xi

f

yo

yi

f

The location and size of the image can be computed from the
location and size of the object.

Theorem: Thin Lens Equations
With the dimensions as shown in the figure above,

1
xo

+
1
xi

=
1
f

Theorem: Magnification Equations
With the dimensions as shown in the figure above,

xo
yo

= −xi
yi

where y is negative if below the optical axis.
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. Problem 8.3

Using geometric arguments, prove the thin lens equations.

. Problem 8.4

You have a lens with a focal length of 100cm. You place an object at
150cm from the lens. The object is 3cm tall.
(a) Construct the image location using the principle rays.
(b) Find the location of the image using the thin lens equation.
(c) Find the height of the image from the magnification equation.

§ 8.7 Virtual Image in a Converging Lens

You do not get a real image for all positions of the object. When
the object distance is smaller than the focal length, you get a virtual
image. You have probably notice this effect before while using a mag-
nifying glass: if you look at something far away through a magnifying
glass, you will se the object upside down. If you move closer to the
object at some point it flips over and appears right side up.

pa
pe
r

im
ag
e

pa
pe
r

im
ag
e

le
ns

le
ns

Virtual Image Real Image

In the photograph above you can notice a few things. In the photo on
the left, the letters on the page are almost in-focus, this means that
the image is not too far from the page. In contrast, in the photo on the
right, the letters on the page are very out of focus, this tells us that
the image is far from the page. This is verified by the ray diagrams.

Here is a larger diagram, showing the construction of the virtual
image, that corresponds to the photo on the left.
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xo

-xi

f f

Notice that we still use the three principle rays. The topmost ray in
the figure above strikes the lens as if it came from the focal point. The
dotted line going back to the focal point is an extension of the actual
path of the light ray. Notice also that even though the ray constructed
in this manner does not hit the lens (since the lens was not tall enough)
we can still use the ray to construct the location of the image.

The thin lens and magnification equations can still be used in this
case, but in order to get the algebra to work out correctly you need to
interpret a negative image distance (xi) as being on the side of the lens
where the light originates from.

E
x
a
m

p
l
e Suppose that in the figure above x0 = 6cm, y0 = 2.0cm and f = 9cm.

Putting this into the thin lens equation we find
1

6cm
+

1
xi

=
1

9cm
−→ 1

xi
=

1
9cm

− 1
6cm

= − 1
18cm

−→ xi = −18cm

Now we can use the magnification equation to find the size of the image.
yi
xi

= − yo
xo
−→ yi = − xi

xo
yo = −−18

6
(2cm) = 6.0cm

. Problem 8.5

You have a lens with a focal length of 80cm. You place an object at
60cm from the lens. The object is 3cm tall.
(a) Construct the image location using the principle rays.
(b) Find the location of the image using the thin lens equation.
(c) Find the height of the image from the magnification equation.

. Problem 8.6

For a converging lens with a focal length of f , over what range of object
distances is the image:
(a) real?
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(b) virtual?

(c) upright?

(d) inverted?

(e) larger than the object?

§ 8.8 Diverging Lenses

Now consider what happens when parallel rays strike a lens that
is thiner in the middle. The rays diverge from the optical axis as if
they came from the focal point on the incident side. This type of lens
is called a Diverging Lens. This is drawn in the figure below.

-f

We might also consider what happens to rays that are converging to-
ward the focal point on the far side of the lens, these rays exit the lens
parallel to the optical axis, as indicated in the diagram below.

-f

We can, as before, construct the location and size of the image, by
using three principle rays. The three rays are, (1) a ray that leaves the
object parallel to the optical axis, (2) a ray going through the center of
the lens, (3) a ray that leaves the object headed toward the focal point
on the far side of the lens. This has been done in the figure below.
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xo

-xi
-f -f

We can also find the location and size of the image by using the thin
lens equation and the magnification equation. Once again a negative
value for image distance xi, indicates that the image is on the same
side of the lens as the source of the light. We must also use a negative
value for the focal length of a diverging lens.

E
x
a
m

p
l
e Suppose that in the figure above x0 = 20cm, yo = 8cm and f = −12cm.

Putting this into the thin lens equation we find
1

20cm
+

1
xi

=
1

−12cm
−→ 1

xi
= − 1

12cm
− 1

20cm
−→ xi = −7.5cm

Now we can use the magnification equation to find the size of the image.
yi
xi

= − yo
xo
−→ yi = − xi

xo
yo = −−7.5

20
(8cm) = 3.0cm

. Problem 8.7

You have a lens with a focal length of -100cm. You place an object at
150cm from the lens. The object is 5cm tall.
(a) Construct the image location using the principle rays.
(b) Find the location of the image using the thin lens equation.
(c) Find the height of the image from the magnification equation.

. Problem 8.8

For a diverging lens, show that the object distance must be negative, in
order for the image distance to be positive. In other words the object
must be virtual, in order for the image to be real. We will see, in
the next section, how it is possible for to have a virtual object to be
negative.
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§ 8.9 Sign Conventions and Coordinates System
We have used the coordinates

(xo, yo) for the object and the coor-
dinates (xi, yi) for the image. The
direction of positive y is the same
for both coordinate systems. The
direction of positive x was opposite.

Light 
In xi

yi

xo

yo
Light 
Out

Transmitting  Lens

A curved mirror is also a lens. The co-
ordinate sign convention, stated as follows,
covers both types of lenses.
• The x-axis of the object coordinate system
is in the opposite direction as the incoming
light.
• The x-axis of the image coordinate system
is in the same direction as the outgoing light.

Light 
In

xi

yi
Light 
Out

xo

yo

M
irror

Reflecting  Lens

A concave mirror (as shown) is a converging lens, while a convex
mirror is a diverging lens. The sign convention for focal lengths is the
same for mirrors.

§ 8.10 Multi-Lens Optical Systems
Most optical systems are composed of more than one lens. We do

not need more theory in order to work with a multi-lens system. The
light passes from one lens to the next in sequence. In order to do a
computation with a multi-lens system, we need only use the image of
one lens as the object of the next lens.

E
x
a
m

p
l
e Suppose that you have a diverging lens, f = −12cm, followed by a

converging lens, f ′ = 16cm. The lenses are 20 cm apart. You place an
object that is 9cm tall at a distance of 24 cm from the diverging lens.
We can construct the final image as follows.

 8cm

 12cm 12cm

28 cm 37.3 cm

O
bject 1

Im
age 1

O
bject 2

Im
age 2

20 cm24 cm

16cm16cm

Or we could compute the final image from the thin lens equation. Given
f = −12cm and xo = 24cm we can compute

1
xi

=
1
f
− 1
xo

=
1

−12cm
− 1

24cm
= − 3

24cm
−→ xi = −8cm
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So

yi = − xi
xo
yo = −−8

24
(9cm) = 3cm

The second lens is 20 cm past the first, so the object distance for the
second lens is

x′o = 20cm− xi = 20cm− (−8cm) = 28cm.
From this we can compute the final image location

1
x′i

=
1
f ′
− 1
x′o

=
1

16cm
− 1

28cm
−→ x′i = 37.33cm

and

y′i = − x
′
i

x′o
yo = −−37.3

28
(3cm) = 4cm

Notice that the second lens has formed a real image of the virtual image
produced by the first lens.

In the following example, the second lens has a virtual object.

E
x
a
m

p
l
e Suppose that you have a converging lens, f = 12cm, followed by a

diverging lens, f ′ = −12cm. The lenses are 18 cm apart. You place an
object that is 4cm tall at a distance of 24 cm from the converging lens.
We can construct the final image as follows.

 12cm 12cm

O
bject 2

Im
age 2

18 cm24 cm

12cm

Im
age 1

O
bject 1

The top ray is not used to construct the first image, since it is not a
principle ray of the first lens. The first image is constructed from the
other two rays, and then the third ray is draw so that it goes to the
first image and also through the center of the second lens, this makes
it a principle ray of the second lens. Similarly the center ray is not a
principle ray of the second lens, it is only used for constructing the first
image. The bottom ray is a principle ray of both lenses.
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We can also compute the final image from the thin lens equation.
Given f = 12cm and xo = 24cm we can compute

1
xi

=
1
f
− 1
xo

=
1

12cm
− 1

24cm
=

1
24cm

−→ xi = 24cm

So
yi = − xi

xo
yo = −24

24
(4cm) = −4cm

The second lens is 18 cm past the first, so the object distance for the
second lens is

x′o = 18cm− xi = 18cm− (24cm) = −6cm.
From this we can compute the final image location

1
x′i

=
1
f ′
− 1
x′o

=
1

−12cm
− 1
−6cm

−→ x′i = 12cm

and

y′i = − x
′
i

x′o
yo = − 12

−6
(−4cm) = −8cm

Notice that the diverging lens has formed a real image. Also notice that
the first lens would have formed a real image, but since the diverging
lens enters the optical path before the image is formed, the first image
does not actually get formed.

§ 8.11 Homework

. Problem 8.9

You are designing a movie projector. The film is 8mm wide, and you
wish to project this film onto a screen that is 2.0 meters wide from a
distance of 10 meters.
(a) How far from the lens should the film be?
(b) What should the focal length of the lens be?

. Problem 8.10

An object is located 20cm to the left of a diverging lens having a focal
length f = −32cm. Determine the location and magnification of the
image. Construct a ray diagram for this arrangement.

. Problem 8.11

An object is placed 40 cm in front of a lens with focal length +10 cm.
Describe the image (i.e. location, magnification, etc.).

. Problem 8.12

Two converging lenses, each of focal length 10 cm, are separated by
35 cm. An object is 20 cm to the left of the first lens. (a) Find the
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position of the final image using both a ray diagram and the thin-lens
equation. (b) Is the image real or virtual? Upright or inverted? (c)
What is the overall magnification of the image?

. Problem 8.13

An object is 15 cm in front of a positive lens of focal length 15 cm. A
second negative lens of focal length -15 cm is 20 cm from the first lens.
Find the final image and draw a ray diagram.

. Problem 8.14

A concave mirror has a focal length of 40.0cm. Determine the object
position for which the resulting image is upright and four times the size
of the object.

. Problem 8.15

A concave mirror has a radius of curvature of 60 cm, (f = 30cm).
Calculate the image position and magnification of an object placed in
front of the mirror at distances of 90 cm and 20 cm. Draw ray diagrams
to obtain the image in each case.

. Problem 8.16

Under what conditions will a concave mirror produce and erect image?
A virtual image? An image smaller than the object? An image larger
than the object? Repeat the exercise for a convex mirror.

. Problem 8.17

A dentist wants a small mirror that will produce an upright image with
a magnification of 5.5 when the mirror is located 2.1 cm from a tooth.
(a) What should the radius of curvature of the mirror be? (b) Should
it be concave or convex?
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§ 8.12 Summary

Facts

• Law of Reflection:
θi = θr

• Snell’s Law:
ni sin θi = nt sin θt

Theorems

• Thin Lens Equation:
1
xo

+
1
xi

=
1
f
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A Hints

1.1 Do the directions “by hand”. To make it easier to keep track of
everything write all forces in terms of the quantity F0 = q2

4πε0a2 .
1.2 Use the vector form of Coulomb’s law.
1.3 The answer is ~E(x, 0) = q

4πε0

−2â
(x2+a2)3/2 .

1.4 Use polar coordinates, ~rs = R cos θı̂+R sin θ̂ and dq = Q
2πdθ.

1.5 Use Gauss’s Law.
1.6 Do not attempt to integrate the flux over the surfaces. First,
look carefully at the orientation of the electric field through each of the
three faces that touch the charge. Second, because of the symmetry of
the configuration the remaining three faces must have the same flux as
each other. Third, notice that if you placed eight such cubes around
the charge (forming a larger cube with the charge at the center), that
all eight smaller cubes would have the same flux.
1.7 Use a gaussian surface that is a sphere of radius r, centered on
the charge.
1.8 Use Gauss’s law. The gaussian surfaces are spheres. If r < R
then the amount of charge inside the gaussian surface depends on r,
show that the amount of charge inside is qin = Q r3

R3

1.10 Assume that the field is directed straight out from the line. Let
the Gaussian surface be a cylinder (like a tin can) with the line charge
as the axis of the cylinder. Note that the flux through the ends of the
can is zero because of the orientation relative to the field.

1.11 The gaussian surface is a cylinder of radius r and length L.
1.12 Recall that there can be no field inside the body of a conductor
that is in static equilibrium.
1.13 The geometry gives you the angle of the forces, but because
the charges are not of the same size you must still deal with both
components. Depending on your disposition, you might prefer using
the vector form of Coulombs law.
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1.14 Since this is only an estimate, assume that you are composed
entirely of water.
1.16 Be sure to add the parts as vectors.
1.17 Let the charge elements dq be little sections of arc that subtend
and angle dθ. Notice that the full charge is spread over a half a circle
so that the charge density (charge per angle) is −7.5µC

π , so that dq =
−7.5µC

π dθ.
1.18 Use the work energy theorem. Recall that work is force time
distance.
1.19 This is like a projectile motion problem, but this time we have
a constant electric force rather than an constant gravitational force.
1.20 Start by making a free body diagram and be sure to include the
force of gravity and the force of the string.
1.21 A flux is negative if it is into the volume of the box and positive
if the flux is out of the volume of the box.
1.22 There is a very easy way to do this problem, by using the fact
that there is no charge inside the volume of the nose cone.
1.25 ~r = −xı̂
2.1 Look at the definition of electric potential, how is the electric
potential related to potential energy?
2.2 Use the work energy theorem.
2.3 Follow the example in the text for a nonuniform field.
2.4 Follow the example in the text.
2.6 Consider a closed surface that is totally within the outer conduc-
tor and surrounds the inside surface of the outer conductor, as indicated
by the dotted line in the figure. Using the fact that there is no field
inside a conductor argue that the electric flux through this surface is
zero. From this use Gauss’s law to find the charge on the inside surface
of the outer conductor. Next use the fact that the total charge on the
outer conductor is equal to the sum of the charge on its two surfaces,
to find the charge on the outside surface of the outer conductor.
2.7 Use Gauss’s law. Remember that the electric field is zero inside
the body of a conductor.
2.8 Use the definition of capacitance.
2.9 Use the fact that the electric field strength between the plates is
both σ/ε0 and ∆V/d, where σ is the charge density on the plates.
2.10 Assume that the capacitor is charged so that the inside sphere
has a charge Q and the outside sphere has a charge −Q. Use Gauss’s
law to get the field strength between the shells.
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2.11 First suppose that there is a charge Q on the length L of the
central wire, and a charge −Q on the outer shield. Then use gauss’s
law to show that the electric field strength between the wire and shield
is E = Q

2πLε0
1
r . Next show that the potential difference between the

wire and shield is ∆V = Q
2πLε0

ln(b/a). Finally use the definition of
capacitance.

2.12 The field around a line charge has already been found, use this
to find the electric potential around a single wire. Find the electric
potential difference as you move from one to the other for each wire
and then add. Once you have the electric potential difference between
the wires you can find the capacitance.

2.13 Since there is a maximum field strength there is also a maximum
energy density, and the energy density is the energy stored divided by
the volume of the capacitor.

2.14 The change in the charge switches the direction of the electric
field, which alters the dot product. Also q = −|q|.
2.15 Use the work energy theorem.

2.16 Use the work energy theorem.

2.17 Use the work energy theorem.

2.18 Use the work energy theorem.

2.19 Use the work energy theorem.

2.20 Assemble the particles one at a time. The work to bring the
first particle in is zero since there is no field to do work against. The
second particles feels the potential of the first as you bring it in. The
third particle feels the potential of the first two, and so on.

2.21 The field is the gradient of the potential.

2.22 V =
∫

dq
4πε0r

.

2.23 Find the electric potential for each section first. You have actu-
ally done a problem like each of the sections before.

2.24 Write out the field and electric potential of a point charge, then
do some algebra.

2.25 The potential is the sum of the three point potentials. The field
can be found from the derivative of the potential.

2.26 The answer will be in terms of the radius (r0), field (E0), charge
density (σ0), and potential (V0) of the original drops. The charge is all
on the surface of the drop.
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2.27 Imagine that you build of the charge slowly. Suppose that you
have already got a charge q accumulated and you want to bring in an
amount dq more. How much work dW must you do? Once you have
dW written out you can integrate to get W .

2.28 Use Gauss’s law to find the field in all three regions. Then
integrate from infinity inward to find the electric potential. You will
need to split the integral into three regions because the form of the field
changes each time you cross the surface of a shell.

2.29 Look at the definition of capacitance.

2.30 Look at the definition of capacitance.

3.1 The amount of charge is equal to the number of particles times
the charge per particle.

3.2 You will need to use Ohm’s law, the definition of current density
and the relationship between the electric field and the electric potential
∆V = −E ∆x.

3.3 Use the result that R = ρL/A.

3.4 Use P = I ∆V .

3.5 Look up the theorem on electrical power.

3.6 Use the result of the example before this problem.

3.7 The current and voltage on the resistor can be negative (and they
are in this case).

3.8 Assume that the centripetal acceleration of the electron is caused
by the Coulomb force of the proton on the electron. Remember the
definition of electric current.

3.9 Remember that you know the charge of each electron, and that
current is the amount of charge per time.

3.10 Read the definition of current.

3.11 q =
∫
dq =

∫
dq
dt dt

3.12 First compute how many electrons pass a particular point in the
wire in one second. All of these electrons together fill a volume V of
the wire. From the number of electrons you can compute the volume of
electrons. Once you have the volume you can compute the length the
electrons occupy in the wire, since you know the cross sectional area
of the wire. But this length is the distance the electrons move in one
second.

3.13 Use the result that R = ρ`/A.

3.14 Look up electric power.
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3.16 Compute the total charge that can flow from the battery. One
kilowatt hour is a unit of energy 3600kJ.

3.17 From the specific heat of water you can find the energy required
and from this you can find the power and thus from the known voltage
you can find the current and then resistance.

3.18 The internal resistance acts like it is in series with the external
resistor and and ideal voltage source.

3.19 Reduce the system in stages. Look for pairs of resistors in the
system that are in parallel or in series, combine this pair, then repeat
until there is only one resistor left.

3.23 Write out all of the equations and then solve.

3.25 Connect the circuit to a voltage supply VS and using Kirchhoff’s
rules for the resultant circuit you can find the charge on each capacitor.
This will in turn allow you to compute the total charge drawn form the
power supply and thus the effective capacitance of the system.

3.26 Use Kirchhoff’s rules

3.27 Use Kirchhoff’s rules

3.28 The bulb that draws the most power is brighter.

3.29 The appliances are connected in parallel to the voltage supply.

3.30 Use the result of the other problem in which you computed the
resistance of a 12 gauge copper wire.

3.31 The amount of heating is proportional to the power dissipated
by the wire per length.

3.32 When the capacitor is fully charged, no current flows into it.

4.1
(a) Notice that ~d` has length Rdθ and is perpendicular to the radius
vector.

4.2 Compute the force on each of the fours section of wire first. Recall
that torque is ~τ = ~r × ~F , where ~r points from the axis of rotation to
the point at which the force is applied.

4.5 For any radius it will take a time 2πm/qB

4.6 Plug the given values into the Lorentz force formula and do the
cross product.

4.7 The magnetic field of the earth points roughly northward.

4.8 Don’t forget that the electron is negatively charged.

4.9 This question is asking you to relate acceleration and force so
start with Newton’s second law.
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4.12 Consider the vector nature of the definition of work and the
direction of the velocity relative to the magnetic force.
4.13 Write out the vectors ~L for each line segment and then do the
cross products.
5.1 Try plotting points for various values of t to get a sense of the
function.
5.2 Start with ~r(t) = ~a+ bt̂ı+ct2̂ and find the value of the constants
by demanding that the curve goes through the three given points.
5.3 The parameterization is t̂ı
5.4 The parameterization is a cos t̂ı+ a sin t̂.
5.5 Since the current density is not uniform, Iin =

∫
JdA.

5.7 Use the result B = µ0I/2πr.
5.8 Use the Biot-Savart law.
5.9 Use the method of the previous problem, and also note that the
current can be found from the electron speed and the radius of the
orbit.
5.10 First argue that half of the wire does not produce any field at
the point of interest. Then use the Biot-Savart law on the other half.
5.11 Argue that the radial lines do not contribute. Note that the
field due to the two arcs are in opposite directions to each other.
5.12 First find the field created by wire 1 at the location of wire 2.
Then find the force that this field produces on wire 2.
5.13 Use Ampere’s Law.
5.14 Use Ampere’s Law.
5.15 Since the current density is not uniform, Iin =

∫
JdA.

6.1 The induced current is in the same direction as the electric field.
Determine the direction of the induced field in the center of the loop,
from the known electric field direction. Compare the induced field with
the existing field.
6.2 Choose the Amperian loop to be a circle with radius r and going
through the desired field point half way between the plates. Note that
the current density between the plates is zero.
6.3 Use Kirchhoff’s loop rule to write an equation in the current and
the derivative of the current. Try a solution of the form I(t) = a+be−αt.
6.4 The RMS voltage of the source in the a standard outlet is 120
volts.
6.5 Follow the example in the text for an RC circuit.
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6.6 Use a phasor diagram to draw Kirchhoff’s loop rule, then find the
frequency that minimizes the effective impedance of the RLC combi-
nation.
6.8 Use Faraday’s law. Assume that the magnetic field decreases at
a constant rate over the 20 ms that it goes from 1.6 T to zero, that is

dB/dt = (−1.6T)/(20ms).
6.10 Since the field strength decreases as you move further from the
wire you will need to do an integral in order to compute the magnetic
flux.
6.11 Use Ampere’s Law.
6.13 Consider that Q =

∫
Idt and I = V/R = E/R.

7.2 Start from x = A cosφ.
7.3 Take a look at the diagram of the oscillator that shows the phase
angle at different points in the cycle. For the last part remember that
v = dx/dt and consider the quantity v/x.
7.4 Recall that the phase is φ = ωt + φ0 so that ∆φ = ω∆t. Then
consider by how much the phase must change in order for the oscillator
to complete one cycle.
7.8 First compute the phase difference. Remember that φ1 = −kr1

and φ2 = −kr2. Next use the addition of two waves theorem.
7.9 The collection of points with the same ∆r will form a continuous
line, just like the collection of points that are all 5cm from a single
point makes a circle or radius 5 cm.
7.10 Treat the two holes as two sources.
7.11 The phase of each path is now −kr plus the reflection phase
shift.
7.12 Find the distance from the lower speaker to the point P as a
function of the distance d.
7.15 The path difference occurs in air.
7.16 Use the far field approximation to find the path difference.
7.18 Use the trig identities in the appendix.
7.19 There is a path difference, d sin θ, on both sides of the screen.
7.22 The air gap between the plates will be wedge shaped, because
the thickness of the air gap increases as you move toward the wire,
there will be an increasing phase difference between the two reflected
beams. This leads to the fringes.
7.24 As the slit gets narrower the angle of the first minima increases.
There is a limit to the increase.
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7.26 The distance from the central maximum to the first order maxi-
mum is the same as it would be for a double slit with the same distance
between the two slits as there is between successive lines in the diffrac-
tion grating.
8.1 Use similar triangles and note that the sun is about three times
bigger than the person in the image.
8.2 Use geometry to show that

α

α/2

β α/2

Then use Snells law.
8.3 Each straight line segment that crosses the optical axis, creates
two similar triangles, one above the axis and one below the axis. Use
the properties of similar triangles to get an equation for each of these
pairs.
8.6 Use the thin lens equation to find under what conditions the image
distance is negative.
8.8 Use the thin lens equation.
8.9 Start with the magnification equation.
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B Index

† Energy Density of an Electric Field, 48
† Addition of Two Waves, 147
† Ampere’s Law - Time Varying, 120
† Ampere’s Law, 102
† Biot-Savart Law, 97
† Circular Trajectories, 84
† Conductor in Equilibrium: Charge, 43
† Conductor in Equilibrium: Field, 43
† Conductor in Equilibrium: Potential, 44
† Conductor in Equilibrium: Surface Field, 44
† Coulomb’s Law in Vector Form, 8
† Coulomb’s Law, 8
† Effective Capacitance, 65
† Effective Resistance, 64
† Electric Charge, 4
† Electric Field due to a Point Charge, 15
† Electric Field from the Electric Potential, 40
† Electric Potential of a Point Charge, 48
† Electrical Power, 61
† Electromagnetic Waves and Light, 139
† Energy Stored in a Capacitor, 47
† Faraday’s Law (alternate form), 117
† Faraday’s Law, 116
† Force Currents, 105
† Force on a Current in a Uniform Field, 82
† Gauss’s Law, 20
† Impedance: Capacitor, 125
† Impedance: Inductor, 124
† Interference of Two Sources, 150
† Kirchhoff’s Junction Rule, 61
† Kirchhoff’s Loop Rule, 62
† Law of reflection, 162
† Lenz’s Law, 119
† Magnetic Force on a Current, 82
† Magnetic Force, 81
† Magnification Equations, 169
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† Ohm’s Law: Resistance, 60
† Ohm’s Law: Resistivity, 59
† Reflection Phase Shift, 154
† Short Wavelength Limit, 161
† Single Slit Diffraction, 155
† Snell’s Law, 163
† Superposition Theorem, 15
† Thin Lens Equations, 168
† Two Types of Charge, 4
† Wave due to a Sinusoidal Point Source, 142
† Wavelength in a Medium, 154
† Work by Magnetic Force, 84
alternating current, 122
capacitance, 46
conductivity, 59
conductor, 7
converging lens, 166
current density, 58
current, 58
cyclotron, 85
direct current, 122
displacement current, 120
Diverging Lens, 171
electric field, 10
electric field, 11
electric flux, 20
electric potential, 37
electromagnet, 97
electromagnetic, 139
electromotive force, 116
elements, 57
EMF, 116
equipotential, 41
Farad, 46
field lines, 14
focal length, 166
focal plane, 167
focal point, 166
focus, 166
frequency, 143
gain, 128
gradient, 40
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ground, 38
Hall Effect, 87
Henry, 120
in parallel, 62
in series, 62
in-phase, 147
index of refraction, 153
inductance, 120
infrared, 145
Lorentz Force, 85
magnetic flux, 117
n-type, 88
non-ohmic, 59
ohm, 60
ohmic, 59
optical axis, 166
out-of-phase, 148
p-type, 88
parameterization, 39
parameterize, 98
period, 143
phase, 139
phasor, 125
principle focus, 166
principle rays, 168
real image, 168
resistance, 60
resistivity, 59
Resistor, 59
resonance, 129
scalar field, 16
steady state, 115
Tesla, 82
ultraviolet, 145
uniform, 16
vector field, 16
velocity selector, 86
wavelength, 142
wiring diagram, 57
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C Useful Mathematics

§ C.1 Trigonometry

cos(a+ b) = cos a cos b− sin a sin b
sin(a+ b) = sin a cos b+ cos a sin b

cos a+ cos b = 2 cos
b− a

2
cos

b+ a

2

cos a− cos b = 2 sin
b− a

2
sin

b+ a

2

sin a+ sin b = 2 cos
b− a

2
sin

b+ a

2

§ C.2 Fundamental Derivatives and Integrals

Basic Facts
d
dx [xp] = pxp−1

∫
xp dx = xp+1

p+1
d
dx [eax] = aeax

∫
eax dx = eax

a
d
dx [ln(x)] = 1

x

∫
1
x dx = ln(x)

d
dx [sin(kx)] = k cos(kx)

∫
cos(kx) dx = sin(kx)

k
d
dx [cos(kx)] = −k sin(kx)

∫
sin(kx) dx = − cos(kx)

k

Divide and Conquer Rules
Sum Rule:

f(x) = a g(x) + b h(x) −→ df

dx
= a

dg

dx
+ b

dh

dx

Example: d
dx [3x2 + 4x3] = 3 d

dx [x2] + 4 d
dx [x3] = 6x+ 12x2.

Product Rule:

f(x) = g(x) h(x) −→ df

dx
= g(x)

dh

dx
+
dg

dx
h(x)

Example: d
dx [x2 sin(x)] = x2 d

dx [sin(x)] + d
dx [x2] sin(x) = x2 cos(x) +

2x sin(x).
Chain Rule:

f(x) = g(h(x)) −→ df

dx
=
dg

dh

dh

dx

Example: d
dx [sin(3x2)] = d

d[3x2] [sin(3x2)] ddx [3x2] = cos(3x2)6x
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The Fundamental Theorem of Calculus
Recall that the distance traveled between time t1 and time t2 is

equal to the area under the v versus t graph between these times.

t1 t2

v(t)

Area =
∫ t2

t1
v(t)dt

t

But the distance traveled is also x(t2)− x(t1). So we find that∫ t2

t1

v(t)dt = x(t2)− x(t1)

This works for any pair of functions where one is the derivative of the
other. So in general

IF f(t) =
dg

dt
THEN

∫ t2

t1

f(t)dt = g(t2)− g(t1)

§ C.3 Power Series Expansions

1
1− x

=
∞∑
n=0

xn = 1 + x+ x2 + x3 + x4 . . .

1
1− x

=
N∑
n=0

xn =
∞∑
n=0

xn −
∞∑

n=N+1

xn

sin(x) =
∞∑
n=0

(−1)n

(2n+ 1)!
x2n+1 = x− 1

6
x3 + . . .

cos(x) =
∞∑
n=0

(−1)n

(2n)!
x2n = 1− 1

2
x2 + . . .

ex =
∞∑
n=0

1
n!
xn = 1 + x+

1
2
x2 +

1
6
x3 + . . .

(1 + x)N =
N∑
n=0

N !
n!(N − n)!

xn = 1 +Nx+
N !

2!(N − 2)!
x2 + · · ·
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D Physical Constants and Data

§ D.1 Astronomical Data

Average orbital radius of the Earth about the Sun 1.50× 108km
Average orbital radius of the Moon about the Earth 3.84× 105km
Radius of the Earth (at the equator) 6.37× 103km
Radius of the Sun 6.96× 105km
Radius of the Moon 1.74× 103km
Orbital period of the Earth about the Sun 365.257 days
Orbital period of the Moon about the Earth 27.322 days

§ D.2 Index of Refraction

(at λ=589.3 nm, from wikipedia.org)
Material Index
Vacuum 1 (exactly)
Helium 1.000036
Air at STP 1.0002926
carbon dioxide 1.00045
water ice 1.31
liquid water (20C) 1.333
ethanol 1.36
glycerine 1.47
polycarbonate 1.59
glass (typical) 1.5 to 1.9
cubic zirconia 2.2
diamond 2.4
moissanite 2.7
gallium phosphide 3.5
gallium arsenide 3.9
silicon 4.0

§ D.3 Approximate Electrical Conductivity

(from wikipedia.org)
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Material Ω−1 ·m−1

Silver 63.0× 106

Copper 59.6× 106

Gold 45.0× 106

Aluminium 37.8× 106

Brass 20.0× 106

Iron 10.0× 106

Bronze 7.0× 106

Lead 4.8× 106

Stainless Steel 1.4× 106

Seawater 5.0× 100

Drinking water 5.0× 10−3

Deionized water 5.5× 10−6

Glass ∼ 10−12

Rubber ∼ 10−13
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§ D.4 Fundamental Constants
speed of light c 2.99792458× 108 m

s (exact)
Planck constant h 6.6260755(40)× 10−34J · s

hc 1239.8424(93) eV · nm
1240 eV · nm

h̄ 1.05457266(63)× 10−34J · s
h̄c 197.327053(59) eV · nm

fundamental charge e 1.60217733(49)× 10−19C
mass of electron me 9.1093897(54)× 10−31kg

0.51099906(15) MeV/c2

mass of proton mp 1.672631(10)× 10−27kg
938.27231(28) MeV/c2

Boltzman constant k 1.380658(12)× 10−23J/K
8.617385(73)× 10−5eV/K

Avogadro number NA 6.0221367(36)× 1023

permeability of free space µ0 4π × 10−7N/A2 (exact)
permittivity of free space ε0 1/(µ0c

2) (exact)
8.854187817× 10−12C2/N ·m2

1
4πε0

8.99× 109N ·m2/C2

gravitational constant G 6.67259(85)× 10−11m2/kg · s

§ D.5 Unit Conversions
1 m 3.28 ft
1.6 km 1 mile
1 mile 5280 ft
1 hp 746 W
1 liter 1× 10−3 m3

1 gallon 3.79 liters
1 atm 1.013× 105Pa
1 J 0.239 cal
1 kcal 4186 J

§ D.6 Unit Prefixes
f femto 10−15

p pico 10−12

n nano 10−9

µ micro 10−6

m milli 10−3

k kilo 103

M mega 106

G giga 109

T tera 1012


