
Introductory Physics Two Solutions - 1

1.1 The magnitude of the force between all pairs that are a distance a apart
is F0 = q2

4πε0a2 . Now notice that since the diagonal is
√

2a that the magnitude

of the force for pairs across the diagonal will be q2

4πε0(
√

2a)2
= 1

2F0.
Now lets draw the forces on the upper right charge

We see that the leftward and downward force will add together to make a force
that is along the diagonal toward the center and with a magnitude of

√
2F0.

The 1
2F0 force is away from the center, so the net force is toward the center

and of magnitude F = (
√

2 − 1
2 )F0. By drawing the forces on the other three

charges you can quickly see that all charges feel a force toward the center and
of equal magnitude.

1.2 Let
~r1 = (0.2m)̂ and q1 = 1.0µC

~r2 = (−0.3m)̂ and q2 = −2.0µC
~r3 = (0.4m)̂ı and q3 = 3.0µC

In preparation we compute the following quantities
~r1 − ~r2 = (0.5m)̂ and |~r1 − ~r2| = 0.500m

~r2 − ~r3 = −(0.4m)̂ı− (0.3m)̂ and |~r2 − ~r3| = 0.500m
~r3 − ~r1 = (0.4m)̂ı− (0.2m)̂ and |~r3 − ~r1| = 0.447m

and
q1q2/4πε0 = −0.018N ·m2

q2q3/4πε0 = −0.054N ·m2

q3q1/4πε0 = 0.027N ·m2

~F1 = ~F12 + ~F13

=
q1q2

4πε0
~r1 − ~r2

|~r1 − ~r2|3
+
q1q3

4πε0
~r1 − ~r3

|~r1 − ~r3|3

=
q1q2

4πε0
~r1 − ~r2

|~r1 − ~r2|3
− q3q1

4πε0
~r3 − ~r1

|~r3 − ~r1|3

= −0.018N ·m2 (0.5m)̂
(0.500m)3

− 0.027N ·m2 (0.4m)̂ı− (0.2m)̂
(0.447m)3

= (−0.121N)̂ı+ (−0.012N)̂

Similarly
~F2 = ~F21 + ~F23

= 0.018N ·m2 (0.5m)̂
(0.500m)3

− 0.054N ·m2−(0.4m)̂ı− (0.3m)̂
(0.500m)3

= (0.173N)̂ı+ (0.202N)̂
and

~F3 = ~F31 + ~F32

= 0.027N ·m2 (0.4m)̂ı− (0.2m)̂
(0.447m)3

+ 0.054N ·m2−(0.4m)̂ı− (0.3m)̂
(0.500m)3

= (−0.052N)̂ı+ (−0.190N)̂
1.3
(a)

~E(~r) = ~E1 + ~E2 =
q1

4πε0
~r − ~r1

|~r − ~r1|3
+

q2

4πε0
~r − ~r2

|~r − ~r2|3

−→ ~E(xı̂) =
q

4πε0
xı̂− â
|xı̂− â|3

+
−q

4πε0
xı̂+ â

|xı̂+ â|3

=
q

4πε0
xı̂− â

(x2 + a2)3/2
+
−q

4πε0
xı̂+ â

(x2 + a2)3/2

=
q

4πε0
−2â

(x2 + a2)3/2

(b)

1.4 We will use polar coordinates to describe the path of our line charge,
~rs = R cos θı̂+R sin θ̂ and dq = Q

2πdθ. The field point is ~r = zk̂, so that

~r − ~rs = −R cos θı̂−R sin θ̂+ zk̂

and
|~r − ~rs| =

√
R2 cos2 θ +R2 sin2 θ + z2 =

√
R2 + z2

Fortunately this does not depend on the angle θ, so we will be able to take it

1



Introductory Physics Two Solutions - 2

out of the integral that is to follow.

~E(~r) =
∫

dq

4πε0
~r − ~rs
|~r − ~rs|3

=
∫ 2π

0

Q
2πdθ

4πε0
−R cos θı̂−R sin θ̂+ zk̂

(R2 + z2)3/2

=
1

4πε0
Q

2π
1

(R2 + z2)3/2

∫ 2π

0

dθ(−R cos θı̂−R sin θ̂+ zk̂)

=
1

4πε0
Q

2π
1

(R2 + z2)3/2
(0ı̂− 0̂+ 2πzk̂)

=
Q

4πε0
zk̂

(R2 + z2)3/2

1.5 Φ = qin
εo

so Φ1 = −Q
εo

, Φ2 = 0 , Φ3 = −2Q
εo

, Φ4 = 0.

1.6 There is no flux through the faces touching the charge because the electric
field is perpendicular to the normal to these surfaces, that is, the field is parallel
to the surface. By symmetry the other three faces all must have the same flux,
call it φ. If we take eight such cubes and put them together in a super-cube that
is twice as big, we can put the charge at the center of this super-cube. Each
of the cubes will have the charge at a corner, so each will have the flux we are
trying to find on the outside surfaces, there are 24 such surfaces surrounding
the charge so the net flux through the super-cube is φnet = 24φ. But by Gauss’s
law the net flux is Qin/ε0 so

24φ =
Qin

ε0
−→ φ =

Qin

24ε0
1.7 Use a gaussian surface that is a sphere of radius r, centered on the charge.
Since the field is radial, it is everywhere normal to the surface. Also the field
is uniform over this surface since there is no preferred direction. Thus∮

~E · ~dA = EA = E 4πr2

Putting this into Gauss’s law and noting that Qin is the charge of the particle,
we find that

E 4πr2 =
q

ε0
−→ E =

q

4πε0
1
r2

1.8 Since the charge distribution is sphericaly symetric the field will radiate
straight out from the center of the charge distribution. Consider a sphere or
radius r with its center at the center of the charge distribution. The field will
at all points on this sphere be perpendicular to the surface of the sphere and of
constant magnitude. Thus the flux will be simply the magnitude of the E-field
times the area of the sphere φ = EA = E4πr2. But also the flux will be given
by Gauss’s law to be φ = qin/εo Equating these two expressions for the flux and

solving for the field we find

E =
qin

εo4πr2
.

If we are outside the sphere qin = Q. While if r < R then qin = ρV =
Q

4
3πR

3
4
3πr

3 = Q r3

R3 . Thus we find

E =

{
Q

εo4πr2 if r > R
Qr

εo4πR3 if r < R

1.9 As in the previous problems, the electric field at any distance r from the
sphere’s center will be given by

E =
qenc
εo4πr2

,

where qenc is the charge enclosed by a spherical Gaussian surface of radius r.
So let’s find the charge inside a radius r that is less then a.

qenc =
∫
V

ρ dV =
∫ r

0

ρ 4πr2dr =
∫ r

0

ρo

( r
a

)2

4πr2dr =
4πρor5

5a2

Thus

E =


ρoa

3

5εor2 if r > a

ρor
3

5εoa2 if r < a

1.10 Let our Gaussian surface be a cylinder of length L and radius r with the
line charge on the axis of the cylinder.

The flux is zero through the ends of the cylinder because the field is parallel to
the plane of the ends. While the field is parallel to the normal to the surface
at all points on the sides of the cylinder, so that ~E · ~dA = E dA. Also the field
will be uniform in strength at all points on the sides of the surface because the
sides are all at a distance r from the line charge. Thus∮

~E · ~dA =
∫

ends

~E · ~dA+
∫

sides

~E · ~dA

= 0 +
∫

sides

EdA = E

∫
sides

dA = EL2πr

We have compute the left side of Gauss’s law. Now we need to compute the
charge inside of this surface. Since the surface contains a length L of the line
charge, the charge inside will be Qin = λL. So now we can use Gauss’s law to
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Introductory Physics Two Solutions - 3

find the field strength. ∮
~E · ~dA =

Qin

ε0

−→ EL2πr = λLε0 −→ E =
λ

2πε0r
1.11 Pick our Gaussian surface to be a cylinder of radius r and length L
that is coaxial with the charge distribution. Then we know that the field is
perpendicular to the sides and parallel to the ends and thus the flux is

φ = EAsides = E2πrL.
But by Gauss’s Law we know that the flux is

φ =
qin

εo
=
ρVin

εo
=
ρπr2L

εo
equating these two expressions for the flux and solving for the field we find
E = ρr/2εo.

1.12 Once again, because the charge distribution is spherically symmetric, we
find that

E =
qin

4πε0r2
.

Since all of the charge is on the surface of the conductor, if r > R then qin = Q,
and if r < R then qin = 0. So outside the surface we find E = Q

4πε0r2
and

anywhere inside E = 0.

1.13 Let the two bottom charges be 1 and 2.

~F = Σ~F = ~F1 + ~F2 =
q1q

4πε0
~r − ~r1

|~r − ~r1|3
+

q2q

4πε0
~r − ~r1

|~r − ~r2|3

=
(2µC)(7µC)

4πε0

(0.5m)( 1
2 ı̂+

√
3

2 ̂)
(0.5m)3

+
(−4µC)(7µC)

4πε0

(0.5m)(− 1
2 ı̂+

√
3

2 ̂)
(0.5m)3

=
(2µC)(7µC)

4πε0

( 1
2 ı̂+

√
3

2 ̂)
(0.5m)2

+
(−4µC)(7µC)

4πε0

(− 1
2 ı̂+

√
3

2 ̂)
(0.5m)2

= (0.76ı̂+−0.44̂)N
1.14 Since we are mostly water we can compute the number of protons by
computing the number of protons in about 75 kg of water. Water is 18 grams per
mole and contains 10 protons per molecule. Thus there are 75

0.018NA ≈ 2.5×1027

molecules and 2.5 × 1028 protons. If there were 1% more electrons than this
there would be a net charge of q = −2.5 × 1026e ≈ 4 × 107C. Arms length
is about r = 1.0m, so the force would be F ≈ k q

2

r2 = 1.4 × 1025N. While the
“weight” of the world is mEg = 6×1025N. So we see that these are of the same
order of magnitude.

1.15 From the figure

y

x

r

q
yo

xo

y

x

we see that
~r = (x− xo)̂ı+ (y − yo)̂

r =
√

(x− xo)2 + (y − yo)2

Thus we can write

~E = k
q

r2
r̂ = k

q

r2

~r

r
= kq

~r

r3
= kq

(x− xo)̂ı+ (y − yo)̂
[(x− xo)2 + (y − yo)2]3/2

1.16 From the figure
y

x

q
1
= 2.0 µC

r1 r2

q
2
= 2.0 µC

~r1 = (1.0m)̂ı+ (0.5m)̂
~r2 = (−1.0m)̂ı+ (0.5m)̂
r = r1 = r2 = 1.1m

Thus we can write the E-field as

~E = Σ ~Ei = ~E1 + ~E2 = kq1
~r1

r3
1

+ kq2
~r2

r3
2

=
kq

r3
(~r1 + ~r2)

=
k(2.0µC)
(1.1m)3

((0.0m)̂ı+ (1.0m)̂) = 1.35× 104 N
C
̂

If a charge qo = −3.0µC is at this point it will feel a force
~F = qo ~E = −4.06× 10−2N ̂

1.17
y

x

r

θ

dq
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D = 2πr → r =
14cm
π

= 0.045m

~r = −r cos θı̂− r sin θ̂

dq =
−7.5µC

π
dθ = λdθ

~E =
∫
k
dq

r2
r̂ =

kλ

r3

∫ π

0

~rdθ = −kλ
r2

∫ π

0

(cos θı̂+ sin θ̂)dθ

= −kλ
r2

[sin θı̂− cos θ̂]π0 = −2
kλ

r2
̂ = −2.1× 107 N

C
̂

1.18 The work done by the field goes into changing the kinetic energy of the
electron so

∆K = W −→ 1
2mv

2
f − 1

2mv
2
i = F∆x

Notice that the force and ∆x are in opposite directions so that regardless of the
choice of coordinates the product F∆x will be negative. Now use vf = 0 and
F = qE = −eE and solve the above equation for ∆x

∆x =
mv2

i

2eE
= 2.6cm

1.19 There is no force in the horizontal direction so the proton will have a
constant speed of 4.50 × 105 m

s in the horizontal direction. Thus it will take a
time of 0.05m

4.50×105 m
s

= 1.11× 10−7s to travel 5 cm horizontally.

In the vertical direction there is a force qE = eE so the acceleration is
a = F/m = eE/m. We can now use the constant acceleration equation to find
the displacement

∆x = vot+ 1
2at

2 = 0 +
eE

2m
(1.11× 10−7s)2 = 5.67mm.

At this time the vertical velocity will be
v = v0 + at = 0 + at = −1.02× 105 m

s .

1.20 Σ~F = m~a −→ ~Fe + ~T + ~Fg = 0 −→ q ~E + ~T + ~Fg = 0
q(Ex ı̂+ Ey ̂) + (−T sin θı̂+ T cos θ̂)−mĝ = 0

The x and y components of this equation are
x : qEx − T sin θ + 0 = 0
y : qEy + T cos θ −mg = 0

Eliminating T and solving for q we find

q =
mg

Ex cot θ + Ey
= 1.09× 10−8C

Putting this value back into the x equation we find T = 5.4× 10−3N.

1.21 For the vertical side the normal and the field are in opposite directions
so the dot product becomes

Φa = ~E ·∆ ~Aa = −E∆ ~Aa = −2.34× 102 Nm2

C
.

For the slanted side

∆Ab = (0.30m× 0.10m
cos 60◦

) =
∆Aa

cos 60◦
.

While the angle between the normal and the field is 60◦ so

Φa = ~E ·∆ ~Ab = E∆Ab cos 60◦= E
∆Aa

cos 60◦
cos 60◦= −Φa

The flux on the other three sides is zero since the field is parallel to the faces.
Thus the net flux is zero, as it will be for any closed surface with no charge
inside.
1.22 Since the net flux is zero the flux exiting the paraboloidal surface must
be equal to the flux entering the flat side Φ = πr2Eo.
1.23 The total flux is Φ = qin

εo
regardless of where the charge is place in the

box. If the charge is at the center then the flux will be equaly divided amongst
the six faces and thus the flux through each face will be Φface = qin

6εo
.

1.24 Since the net flux is zero the flux exiting the hemispherical surface must
be equal to the flux entering the flat side. Also we know that the hemispherical
surface must catch half of what would go through a full sphere so Φ = 1

2
q
εo

.
1.25 First note that ~r = −xı̂ so r = x and r̂ = −ı̂. Thus

~E =
∫
k
dq

r2
r̂ =

∫ b

a

k
λdx

x2
(−ı̂) = −

∫ b

a

k
cxndx

x2
ı̂

= −
∫ b

a

kcxn−2dx ı̂ = −kc[xn−1]ba ı̂

4



Introductory Physics Two Solutions - 5

2.1 δU = q∆V = (0.08C)(9V) = 0.72J.

2.2
∆K + ∆U = 0

−→ Kf −Ki = −∆U
Kf − 0 = −q∆V

1
2mv

2
f = −(−e)(+1000V)

−→ vf =

√
2e
m

(1000V) = 1.87× 107 m
s

2.3 First we need to pick a path from the starting point to the ending point.
A straight line will do. Let ~r(t) = x(t)̂ı+ y(t)̂ = (1.0m)t̂ı+ (2.0m)t̂.

~dr =
d~r

dt
dt =

(
dx

dt
ı̂+

dy

dt
̂

)
dt = ((1.0m)̂ı+ (2.0m)̂)dt

so that

∆V = −
∫ B

A

~E · ~dr

= −
∫ 1

0

~E(~r(t)) · d~r
dt
dt

= −
∫ 1

0

(ayı̂+ ax̂) · ((1.0m)̂ı+ (2.0m)̂)dt

= −
∫ 1

0

(a(2.0m)t̂ı+ a(1.0m)t̂) · ((1.0m)̂ı+ (2.0m)̂)dt

= −
∫ 1

0

(4.0m)at dt

= −(2.0m)a
2.4

~E = −~∇V

= −
[
∂V

∂x
ı̂+

∂V

∂y
̂+

∂V

∂z
k̂

]
= − ∂

∂x
axyz ı̂− ∂

∂y
axyz ̂− ∂

∂z
axyz k̂

= ayz ı̂+ axz ̂+ axy k̂

2.6 Consider a closed surface that is totally within the outer conductor and
surrounds the inside surface of the outer conductor, as indicated by the dotted
line in the figure. Since there is no field inside a conductor, the electric flux
through this surface is zero; φe = 0. Thus by Gauss’s law we know that the
Qin = ε0φe = 0. But the charge inside is the charge on the inside surface of the

outer conductor, Qinside, plus the charge on the inner conductor, Qa. Thus
0 = Qin = Qinside +Qa −→ Qinside = −Qa.

Next we note that the total charge on the outer conductor is the sum of the
charge on it’s inside and outside surfaces so that

Qb = Qinside +Qoutside

−→ Qoutside = Qb −Qinside = Qb − (−Qa) = Qb +Qa

2.7 Consider a Gaussian surface that is a sphere at a radius of 4.5 cm. Since
this surface is totally within the body of the conductor we know that the flux
is zero since the field is zero in a conductor. But this tells us that the charge
inside the surface is zero. Thus we know that the inside surface of the shell
must carry a charge equal and opposite to the charge of the point charge. Thus
the inside surface carries a charge of −2.0µC. In order for the shell to have a
net charge of 10µC then the charge on the outside surface must be 12µC.

σinside =
−2.0µC

4π(0.040m)2
= −1.0× 10−4 C

m2

σoutside =
12.0µC

4π(0.050m)2
= 3.8× 10−4 C

m2

2.8 C = Q
∆V −→ Q = C ∆V = (6.0µF)(1.5V) = 9.0µC.

2.9 From Gauss’s law the electric field near a charged plate is σ/2ε0. Since
there are two plates, the field between the plates is E = σ/ε0. Also the electric
field is related to the electric potential difference between the plates, E = ∆V/d.
Thus we find that

σ

ε0
=

∆V
d
−→ σ

∆V
=
ε0
d

But the charge on the plates is Q = σA so that

C =
Q

∆V
=

σA

∆V
=

σ

∆V
A =

ε0
d
A =

ε0A

d
2.10 Assume that the capacitor is charged so that the inside sphere has a
charge −Q and the outside sphere has a charge +Q. By Gauss’s law the field
between the shells is E4πr2 = −Q/ε0 −→ −Q/4πε0r2 Thus we can find the
electric potential difference

∆V = −
∫ b

a

E dr = −
∫ b

a

−Q
4πε0r2

dr =
Q

4πε0

(
1
a
− 1
b

)
Thus

C =
Q

∆V
=

4πε0
1/a− 1/b

2.11 First suppose that there is a charge Q on the length L of the central
wire, and a charge −Q on the outer shield. Now imagine a gaussian surface

5
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around the central wire that is between the outer shield and the wire, and a
distance r from the wire. There is no flux through the ends of this surface and
the field is normal to the cylindrical surface. Thus the net flux is φ = EA where
A is the area of the surface 2πrL. Thus φ = Qin

ε0
−→ E = Q

2πLε0
1
r We want to

find the potential difference between the wire and shield.
∆V = Va − Vb

= −
∫ a

b

~E · ~dr

=
∫ b

a

~E · ~dr

=
∫ b

a

E dr

=
∫ b

a

Q

2πLε0
1
r
dr

=
Q

2πLε0
[ln(r)]ba

=
Q

2πLε0
[ln(b)− ln(a)]

=
Q

2πLε0
ln(b/a)

Now we can us this to find that

C =
Q

∆V
=

2πε0L
ln(b/a)

2.12 Move from the negatively charged wire to the positively charged wire.
Find the change in potential due to each wire and then add. From Gauss’s law
we know that the electric field due to the positive wire is given by E = λ

2πεor
.

Thus the change in potential due to the positive wire is

∆V+ = −
∫ a

b−a
E+dr = −

∫ a

b−a

λdr

2πεor
=

λ

2πεo
ln ( b−aa )

Similarly the change in potential due to the negative wire is

∆V+ = −
∫ b−a

a

E−dr = −
∫ b−a

a

−λdr
2πεor

=
λ

2πεo
ln ( b−aa )

Thus the total change in electric potential in going from the negative to the
positive wire is

V = ∆V+ + ∆V− =
λ

πεo
ln ( b−aa )

Putting λ = Q/` in the above equation and solving for Q we find

Q = `
πεo

ln ( b−aa )
V −→ C = `

πεo
ln ( b−aa )

−→ C

`
=

πεo
ln ( b−aa )

2.13
(a) U = 1

2CV
2
C = 1

2 (120µF)(100V)2 = 0.6J.
(b) Since there is a maximum field strength there is also a maximum energy
density umax = 1

2ε0E
2
max = 1

2ε0(3 × 106 V
m )2 = 39.8J/m3. So U

V < umax −→
V > U

umax
= 0.6J

39.8J/m3 = 0.015m3.

2.14 With q < 0 the electric field is pointed toward the center and q = −|q|
so that

~E =
|q|

4πε0r2
(−r̂) =

q

4πε0r2
r̂

But this is the same as form as for the positive particle so the integral will also
be of the same form.

2.15
∆K + ∆U = 0
−→ Kf − 0 = −∆U = −q∆V = e∆V

1
2mv

2
f = e

e

4πε0

[
1
rf
− 1
ri

]

−→ vf =

√
2
m

e2

4πε0

[
1

0.005m
− 1

0.02m

]
= 275m

s

2.16 ∆K+∆U = Wnc −→ ( 1
2mv

2
f −0)+q∆V = 0. Solving for the potential

difference we find
∆V = −mv2

f/2q = m(0.4c)2/2e = 41kV.

2.17 ∆K + ∆U = Wnc −→ 0 + q∆V = Wnc. But q = NA(−e) and
∆V = Vf − Vi = −14V so Wnc = 1.35× 106J.

2.18 ∆K + ∆U = Wnc −→ ( 1
2mv

2
f − 1

2mv
2
i ) + q∆V = 0 Thus ∆V =

−( 1
2mv

2
f − 1

2mv
2
i )/q = −38.9V. We see that the final point is at a lower electric

potential. Note also that this depends in no way on the distance 2.0 cm.

2.19 For the alpha particle q = 2e and
∆K + ∆U = Wnc −→ (0− 1

2mv
2
i ) + q∆V = 0.

Now consider the electric potential difference ∆V . This is due to the change in
position relative to the nuclear charge Q = 79e. Thus

∆V = Vf − Vi = k
Q

rf
− kQ

ri
= k

Q

rf
− k Q
∞

= k
Q

rf

6
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Putting this expression of the electric potential difference into the previous
equation and solving for rf we find

rf =
2kqQ
mv2

i

= 2.8× 10−14m

Note: The alpha particles were not really fired at a gold nucleus but rather at
a thin sheet of gold. Thus since the gold atoms are neutral there is no electrical
force until the alpha particle passes inside the atom. It would thus have been
a better approximation to take to potential difference between the atomic ra-
dius and the stopping radius. This would be equivalent to presuming that the
electrons all reside on the surface of the atom. The cruder approximation that
we actually did gives a good result anyway since the atomic size it about four
orders of magnitude larger then the stopping radius, and thus is effectively at
infinity anyway. It is strange to think that an atomic radius could be effectively
infinity. This gives us an idea of how small the nucleus is compared with the
atom.

2.20 Let us bring the charges in one at a time and find the work done to
bring each one. The work to bring the first is zero since there is no repulsive
force to overcome, W1 = 0. The work to bring in the second is the change in
potential energy of the second charge in the field of the first as we bring the
second charge in from far away to a distance s from the first. Thus

W2 = Q∆V2 = Q

(
kQ

rf
− kQ

ri

)
=
kQ2

s
.

Now we have two charges so the third charge will have a change in potential
due to both of the first two charges.

So W3 = Q∆V3 = kQ2

s + kQ2
√

2s
.

Similarly W4 = Q∆V4 = kQ2

s + kQ2

s + kQ2
√

2s
.

So the total work is W =
(

4 + 2√
2

)
kQ2

s =
(
4 +
√

2
)
kQ2

s .

2.21 We know that ~E = −~∇V so

~E = −∂V
∂x

ı̂− ∂V

∂y
̂− ∂V

∂z
k̂

= (−5 + 6xy)̂ı+ (3x2 − 2z2)̂+ (−4yz)k̂ = −5ı̂− 5̂+ 0k̂

2.22 The constant α must have the units of charge per area.

V =
∫
k
dq

r
=
∫ L

0

k
λdx

r
=
∫ L

0

k
αxdx

x+ d

= αk[x+ d− d ln(x+ d)]L0
= αk[L− d ln(1 + L/d)]

2.23 The electric potential due to the curved section is

Vc =
∫
k
dq

r
=
∫ πR

0

k
λds

R
= k

λπR

R
= kλπ.

The electric potential due to one of the straight sections is

Vs =
∫
k
dq

r
=
∫ 3R

R

k
λdx

x
= kλ ln

3R
R

= kλ ln 3.

The total electric potential is
V = 2Vs + Vc = kλ(2 ln 3 + π).

2.24 We know that for a point charge E = kq/r2 and V = kq/r. Thus
V/E = r and we can find that r = 6.0m. We can then solve V = kq/r for q
and find q = V r/k = 2.0µC.

2.25
(a)

V =
kQ

x+ d
+

kQ

x− d
+
k(−2Q)

x
=

kQ2x
x2 − d2

+
k(−2Q)

x
=

2kQd2

x(x2 − d2)
(b) By the placement of the charges we know that on the x-axis the field is
parallel to the x-axis:

~E = Ex ı̂+ Ey ̂+ Ez k̂ = Ex ı̂+ 0̂+ 0k̂ = Ex ı̂.

But also we know that

Ex = −∂V
∂x

=
2kQd2(3x2 − d2)
x2(x2 − d2)2

.

(c) Since x� d we can ignore any dn that is summed with an xn.

V ≈ 2kQd2

x(x2 − 0)
=

2kQd2

x3

Ex ≈
2kQd2(3x2 − 0)
x2(x2 − 0)2

=
6kQd2

x4

2.26 First let us find two other relationships; charge and radius. The charge
(Q) on the large drop is twice the charge (Qo) on the smaller drops:

Q = 2Qo.
Also the volume of the large drop is twice the volume of the smaller drops so
4
3πr

3 = 2 4
3πr

3
o so

r = 21/3ro.

Now we can find the surface density

σ =
Q

A
=

Q

4πr2
=

2Qo
4π(21/3ro)2

= 21/3 Qo
4πr2

o

= 21/3σo ,

7
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and the field strength

E = k
Q

r2
= k

2Qo
(21/3ro)

2 = 21/3k
Qo
r2
o

= 21/3Eo ,

and the potential

V = k
Q

r
= k

2Qo
21/3ro

= 22/3k
Qo
ro

= 22/3Vo .

2.27 Suppose that we are charging up the sphere slowly and that right now
the sphere has built up a charge q. Now consider how much work would be
required to bring an additional charge dq from infinitely far away to the surface
of the sphere. dW = dU = dq ∆V = dq(VR − V∞) = dq(k qR − 0) = k q dqR . Now
we can add up the work done to bring each bit of charge as the sphere was
charged up from zero to Q.

W =
∫
dW =

∫ Q

0

k
q dq

R
= 1

2k
Q2

R

2.28 By the symmetry of the charge distribution we know that the field is
radial at all places so we need only find the strength. By Gauss’s law we know
that the field is E = k qinr2 . Thus with q1 = 10nC and q2 = −15nC

E =


0 for r < a
k q1r2 for a < r < b

k q1+q2
r2 for b < r

With the E-field we can now find the electric potential via

V = V − V∞ = −
∫ r

∞
Edr

If r > b then E = k q1+q2
r2 and the integral gives V = k q1+q2

r . If a < r < b then
we must split the integral into two parts

V = −
∫ r

∞
Edr = −

(∫ b

∞
Edr +

∫ r

b

Edr

)

= −
∫ b

∞
k
q1 + q2

r2
dr −

∫ r

b

k
q1

r2
dr

=
[
k
q1 + q2

b
− 0
]

+
[
k
q1

r
− k q1

b

]
= k

q2

b
+ k

q1

r

If r < a then we must split the integral into three parts

V = −
∫ b

∞
Edr −

∫ a

b

Edr −
∫ r

a

Edr

= −
∫ b

∞
Edr −

∫ a

b

Edr −
∫ r

a

0dr = k
q2

b
+ k

q1

a

0.2 0.4 0.6 0.8 1

-150

-100

-50

50

100

150

V (volts)

r (meters)

2.29 Q = CV −→ C = Q/C = 1.0µF. The charge and voltage are propor-
tional so since the charge has increased ten times the voltage must increase ten
time also so V = 100V.
2.30 Q = CV −→ C = Q/C = Ne/C = 18.0nF
2.31 The energy density of the field is 1

2εoE
2 so the total energy is

U =
∫

1
2εoE

2dV.

But we know that E = kQ/r2 for r > R and zero for r < R and also we know
that the volume of a spherical shell of thickness dr is dV = 4πr2dr so

U =
∫ ∞
R

1
2εo

(
kQ

r2

)2

4πr2dr = 1
24πεok2Q2

∫ ∞
R

dr

r2
=
kQ2

2R
Equating this to mc2, solving for R and setting Q = e we find

R =
ke2

mc2
= 2.8× 10−15m.

8



Introductory Physics Two Solutions - 9

3.1
(a) The amount of charge that passes through can be found from the definition
of current.

dq = Idt

This amount of charge is also equal to the number of electrons that pass through
dN times the charge of an electron e.

dq = dN e

Combining these to eliminate dq we find

dN =
Idt

e
=

(1.0× 10−3C/s)(1.6× 102s)
1.6× 10−19C

= 1018

(b)

J =
I

A
=

I

πr2
=

(1.0× 10−3C/s)
π(2.0× 10−4m)2

= 8.0× 103A/m2

3.2 Suppose that the electric potential difference between the ends of the wire
is ∆V , and the current through the wire is I. We can relate the electric potential
difference to the electric field strength.

∆V = E dr = EL

We can use Ohm’s law to relate the electric field to the current density.

J =
1
ρ
E

Combining these we find
∆V = ρJL

But the current density is J = I/A so that we can write

∆V =
ρIL

A
From this we can compute the resistance.

R =
∆V
I

= ρ
L

A
3.3 The greatest resistance will be found by picking the two sides that are
furthest apart (3a). For these the cross sectional area is 2a× a = 2a2 and so

R = ρ
L

A
= ρ

3a
2a2

= ρ
3
2a

The least resistance will be found by picking the two sides that are closest
together (a). For these the cross sectional area is 2a× 3a = 6a2 and so

R = ρ
L

A
= ρ

a

6a2
= ρ

1
6a

3.4 P = I∆V −→ I = P/∆V = 0.5A.

3.5
(a) P = I ∆V = I(IR) = I2R.
(b) P = I ∆V = (∆V/R)∆V = (∆V )2/R.

3.6

VC = VS(1− e−t/RC) −→ e−t/RC = 1− VC/VS = 1− 5/10 = 1/2

−→ −t/RC = ln(1/2) −→ t = −RC ln(1/2) = 10.39ms

3.7 Going around counter clockwise, Kirchhoff’s loop rule gives us
VC + VR = 0 −→ VR = −VC

But since Q = CVC we know that I = dQ/dt = CdVC/dt and

VR = IR = RC
dVC
dt

Putting this into VR = −VC we find that

RC
dVC
dt

= −VC −→
dVC
dt

= − 1
RC

VC

Now we can check our proposed solution VC = VSe
−t/RC to see if it satisfies

this differential equation.

VC = VSe
−t/RC −→ dVC

dt
= VSe

−t/RC
(
− 1
RC

)
= − 1

RC
VC

So we see that this does satisfy the differential equation.

3.8 ΣF = ma→ k e
2

r2 = m v2

r → v =
√

k
mr e = 2.19× 106 m

s . The time for one
orbit is ∆t = 2πr/v = 1.52× 10−16s. So I = ∆Q/∆t = e/∆t = 1.05mA.

3.9 I = ∆Q/∆t = Ne/∆t −→ N = I∆t/e = 7.5× 1015.

3.10 I = dq/dt = 12t2 + 5 = 17Aand J = I/A = 8.5A/cm2.

3.11 Let Io = 100.0A and ω = 120πs−1. Then I = Io sinωt and

∆q =
∫ ∆t

0

dq

dt
dt =

∫ ∆t

0

Io sinωtdt =
[
−Io
ω

cosωt
]∆t

0

=
Io
ω

So ∆q = 0.265C.

3.12 If M is the mass of the wire and m = 63.54g
NA

is the mass of one atom
then the charge in a length ` of wire is

Q = Ne =
M

m
e =

ρ`A

m
e.

The amount of charge that passes a point in the wire in a time ∆t is Q = I∆t.
So we can say that a length ` of the charge passes in a time ∆t if

ρ`A

m
e = Q = I∆t

9
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But this would imply that the charges are moving with a speed of v = `/∆t.
So

v =
`

∆t
=

mI

ρAe
= 7.4× 10−5 m

s

3.13 R = ρ `A = ρ `
πr2 = 0.310Ω.

3.14 P = IV = V 2/R so P
Po

= V 2/R
V 2
o /R

= 1.36 −→ 36%.

3.15 Since the mass is the same the volume must be the same so

VA = VB −→ LAAA = LBAB −→
AB
AA

=
LA
LB

= 2

Also, the resistance of a wire is proportional to the ratio of the length and
cross-sectional area. So that

RA
RB

=
LA/AA
LB/AB

=
LA
LB

AB
AA

= 2 · 2 = 4

3.16 1/A · 1hr = 3600C so 55A · hr = 198, 000C. Thus the potential energy is
U = QV = (198, 000C)(12V ) = 2376kJ. One kilowatt hour is really a unit of
energy 3600kJ. So if 3600kJ costs 12 cents 2376kJ will cost about 8 cents. Not
much!

3.17 cm∆T = heat = P∆t = V 2

R ∆t→ R = V 2∆t
cm∆T = 29Ω.

3.18 The voltage on the terminals of the battery is V = E − Ir but this is
also the voltage on the resistor V = IR so that IR = E − Ir.
(a) From this we can find that R = E/I − r = 7.7Ω.
(b) The power lost in the internal resistor is P = IV = I2r = 1.7W.

3.19 First find the equivalent resistance and then connect it to the 34 V power
supply and find the currents.

4 Ω

7 Ω

10 Ω

9 Ω 4 Ω 4.1 Ω 9 Ω 17.1 Ω

2.0 A

34 V34 V

2.0 A 2.0 A 2.0 A2.0 A 2.0 A

34 V

1.2 A

0.8 A

(a) The 7Ω and 10Ω resistors are in parallel so they can be combined into a
4.1Ω resistor. This is in series with the other two resistors so that the effective
resistance of the system is Reff = 4Ω + 4.1Ω + 9Ω = 17.1Ω.

(b) The current through the system will be (34V)/(17.1Ω) = 2.0A. This will
also be the current through the 4Ω and 9Ω resistors. The other two resistors
share the current, I = I1 + I2. Since these two resistors are in parallel we know
that the voltage on them is the same so that I1R1 = I2R2. Combining these
two equations we find

I1 =
R2

R1 +R2
I.

This result will work any time two resistors are in parallel. In this particular
case

I7Ω =
10

7 + 10
(2.0A) = 1.2A

So

I10Ω = I − I7Ω = 0.8A

3.20 First lump the resistors and between points a and b

10 Ω 25 V- +

25 Ω5.0 Ω

10 Ω 25 V10 Ω

2.94 Ω

+-

25 V10 Ω +-
10 Ω

5.0 Ω 5.0 Ω 20 Ω
= =

Now we see that the voltage between a and b is Vab = 2.94Ω
10Ω+2.94Ω25V = 5.68V.

But the 20Ω and the 5Ω are in series across this 5.68 V so the current through
these resistors is I = 5.68V/(20Ω + 5Ω) = 0.227A.

3.21 Adding the two that are in series we find that
1
Ca

=
1

3.0µF
+

1
6.0µF

−→ Ca = 2.0µF.

3.0 µF 6.0 µF

2.0 µF

2.0 µF

2.0 µF

4.0 µF

This is in parallel with the real 2.0 µF capacitor so the net capacitance is
Ceff = 2.0µF + 2.0µF = 4.0µF.

3.22 As the last problem we find the effective capacitance by the divide and
conquer method.

10
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15 µF 3.0 µF

6.0 µF

2.5 µF

2.0 µF

4.5 µF20 µF 20 µF 20 µF 3.7 µF

Now to figure the voltages we first consider the general problem of two capacitors
in series with a voltage V across the pair. We know that since they are in series
they must have the same charge so Q1 = Q2 −→ C1V1 = C2V2 but also
we know that the total voltage is the sum of the individual voltages so that
V = V1 + V2 Combining these two equations in order to eliminate V2 and then
solving for V1 we find V1 = V

1+C1/C2
, and similarly V2 = V

1+C2/C1
. With this

result and the observation that capacitors in parallel have the same voltage we
can work from right to left in the diagram below to find.

2.0 V 10.2 V

12.2 V

12.2 V

12.2 V

12.2 V2.8 V 2.8 V 2.8 V 15 V

3.23 In parallel the capacitance is Cp = C1 + C2 = 4.00µF. In series the
capacitance is given by 1

Cs
= 1

C1
+ 1

C2
and also equal to one quarter the indi-

vidual capacitances of one of the capacitors Cs = 1
4C1. Combining these last

two equations we find
4
C1

=
1
C1

+
1
C2
−→ C1 = 3C2

Putting this result into the first equation we find

Cp = 3C2 + C2 = 4.00µF −→ C2 = 1.00µF and C1 = 3.00µF

3.24 Divide and conquer again!

90 V

3 µF 6 µF

2 µF 4 µF

90 V

2 µF

4/3 µF

90 V

10/3 µF

90 V

60 V 30 V

60 V 30 V

90 V

90 V

90 V

90 V

90 V

With the voltages we can easily find the charges using Q = CV

Q2 = C2V2 = 2µF · 60V = 120µC
Q3 = C3V3 = 3µF · 60V = 180µC
Q4 = C4V4 = 4µF · 30V = 120µC
Q6 = C6V6 = 6µF · 30V = 180µC

U = 1
2QV = 1

2CV
2 = 13.5mJ

3.25 Let us first add a power supply to charge up the capacitors and find the
voltages and thus the charge on the individual capacitors.

C1

C2

C3

C4

C5

+ -

+ -

+
-

+
-

+
-

Vab

+ -

Notice that the charge for C4 comes from C1 and C3, so that
Q4 = Q1 +Q3 −→ C4V4 = C1V1 + C3V3

which with these particular capacitors becomes

V4 =
C1

C4
V1 +

C3

C4
V3 −→ V4 = V1 + 4V3.

Similarly

Q2 = Q3 +Q5 −→ V2 = 2V3 + V5

11
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We can find three other equations with Kirchhoff’s loop rule
V1 − V2 − V3 = 0
V3 − V5 + V4 = 0
Vab − V1 − V4 = 0

plus the two above
V4 = V1 + 4V3

V2 = 2V3 + V5

Using the second equation to eliminate V5 we find
V1 − V2 − V3 = 0
Vab − V1 − V4 = 0

V4 = V1 + 4V3

V2 = 2V3 + (V3 + V4) = 3V3 + V4

Using the second to eliminate V4 we find

V1 − V2 − V3 = 0
Vab = 2V1 + 4V3

V2 = 3V3 + (Vab − V1)
Using the first to eliminate V3 we find

Vab = 6V1 − 4V2

4V2 = 2V1 + Vab

These two equations give us V1 = V2 = 1
2Vab. Now notice that the total charge

supplied by the battery is is

Q = Q1 +Q2 = C1V1 + C2V2 = 1
2 (C1 + C2)Vab

Thus we find that the capacitance between points a and b is C = 1
2 (C1 +C2) =

3.0µF.

3.26 First let us label the currents and show the direction of potential dif-
ference on the resistors. Now we can write out the two junction rules and the
three loop rules.

+

2R

2 ε

R

4R 3R

ε

I1 I2

I3I4

+

++ ++

- -

--
- -

I5

I4 = I1 + I5

I3 + I5 = I2

E − I1R− I44R = 0
2E − I22R− I33R = 0
I44R− I33R = 0

−→
Io= ER

I4 = I1 + I5

I3 + I5 = I2

Io − I1 − I44 = 0
2Io − I22− I33 = 0
I44− I33 = 0

Using the first two we can eliminate I2 and I4 we get
Io − 5I1 − 4I5 = 0
2Io − 5I3 − 2I5 = 0
4I1 + 4I5 − 3I3 = 0

−→
Io − 5I1 − 4I5 = 0
3Io − 10I1 − 13I5 = 0

−→ I5 =
Io
5

The last of the resulting three equations was used to eliminate I3. After which
the two were combine to eliminate I1. Thus we find I5 = 50mA. Since this is
positive we know that the direction of the arrow is the direction of the current.

3.27 First let us combine resistors and label the currents.

+
I1

I2I3

+
+

- -

-

3.0 Ω

8.0 Ω

5.0 Ω

1.0 Ω 1.0 Ω

12 V4 V

8.0 Ω

6.0 Ω 4.0 Ω

12 V4 V

+

-

+

-

The junction and two current equations are
I1 = I2 + I3

I18Ω + I36Ω− 4V = 0
I18Ω + I24Ω− 12V = 0

−→
I1 = I2 + I3

I14 + I33 = 2A
I12 + I2 = 3A

Now use the first to eliminate I1 and then eliminate I2 to find

4I2 + 7I3 = 2A
3I2 + 2I3 = 3A

−→ 13I3 = −6A −→
I1 = 11

13A
I2 = 17

13A
I3 = − 6

13A

3.28 Assume the resistance of the two light bulbs is constant. Then for the
same potential difference, the 25W light bulb has less current than the 100W
light bulb since P = IV . Since R = V/I, R25 > R100. The intensity of a
light bulb is proportional to the power being dissipated, and this is equal to
I2R. So, put the light bulbs in series; the current though each will be the same
(different potential differences). If the current is the same, then the bulb with
the greatest R will have the greatest I2R. Since R25 is larger, the 25W bulb is
brightest.

3.29 P = IV −→ I = P/V so I1500 = 12.5A and I1000 = 8.33A and
I750 = 6.25A. Thus the total current drawn is 27.08 A, and more then the
circuit can handle.

3.30 In a previous problem we found the resistance of 15m of 12 gauge copper
wire to be 0.310Ω. Thus 16 feet will have a resistance of R = 0.1Ω, and the
power lost in the wire will be P1.0A = I2R = 0.1W and P10A = I2R = 10W.

12
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3.31 Let us write the power in terms of the characteristics of the wire P =
I2R = I2ρ`/A −→ P/` = I2ρ/A Thus if the two wires are to have the same
power per length at maximum current we relate the maximum currents by

I2
Al

ρAl
A

= I2
Cu

ρCu
A
−→ IAl = ICu

√
ρCu
ρAl

= 15.5A

3.32 Once steady state is reached there is no charge flowing to the capacitor
and thus no current in the 3 kΩ resistor. With no current through that branch
we know that the current in the 12 and 15 kΩ resistors must be the same and
equal to 9.0V/(12kΩ + 15kΩ) = 1

3mA

3 kΩ

9.0 V

10 µF
R2  = 15 kΩ

12 kΩ

Since there is no current running through the 3kΩ resistor the voltage on the
capacitor will be the same as the voltage (5V) on the 15kΩ resistor. Thus the
initial charge on the capacitor is qo = C(5V) = 50µC

When the switch is opened the 12kΩ resistor and the battery are effectively
disconnected from the circuit. Thus we end up with an effective resistance of
R = 15kΩ + 3.0kΩ in a loop with a capacitor with a charge of qo = C(5V) =
50µC. The charge on the capacitor will drop exponentially as q = qoe

−t/RC .
This will cause a current

I = −dq/dt = (qo/RC)e−t/RC = Ioe
−t/RC

with Io = 278µA and RC = 0.18s
If I = Io/5 then e−t/RC = 1/5 −→ t = RC ln 5 = 0.29s.

13
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4.1
(a) The vector ~r = R cos θı̂+R sin θ̂ points to the wire at the location θ. Thus
if we move a small angle dθ the position vector moves a small amount

~dr =
d~r

dθ
dθ = (−R sin θı̂+R cos θ̂)dθ = (− sin θı̂+ cos θ̂)Rdθ

But the change in the position is the vector d` that we are looking for.
(b)

~d`× ~B = (− sin θı̂+ cos θ̂)Rdθ ×B̂ = − sin θB Rdθk̂

So
~F =

∫
I ~d`× ~B = −IBRk̂

∫ π

0

sin θdθ = −2IBRk̂

(c) ~∆` = −2Rı̂ So ~F = I ~∆`× ~B = I(−2Rı̂)×B̂ = −2IBRk̂.

4.2 The force on the two side pieces is zero because the current is parallel
to the field. Using the RHR we see that the force on the upper section is out
of the paper, so that the torque is to the right. The magnitude of the force
on the upper wire is I ∆` B = IwB. This force is at a distance h/2 from
the axis of rotation so it creates a torque ~τupper = ~r × ~F = h

2 IwBı̂. The
force on the lower section is also IwB but is into the paper, which also gives
a torque to the right. The the net torque is the sum of these two torques
τ = τupper + τlower = h

2 IwB + h
2 IwB = IhwB. Note that hw is the area of

the loop so that the torque is IAB, the product of the current, area and field
strength. This ends up being true regardless of the shape of the loop, when the
field is parallel to the plane of the loop.

4.3 qvB = mv2

r −→ m = qB r
v = 9.19× 10−31kg.

4.4
(a) A,B, and C.
(b) C or D.
(c) C or D.
(d) A or F.

4.5 It will take a time equal to the circumference divided by the velocity to
complete one revolution.

T =
2πr
v

= 2π
r

v

But

F = ma −→ qvB = m
v2

r
−→ r

v
=

m

qB

so that
T = 2π

m

qB

We see then that the time it takes to make one revolution depends only on the
mass, and charge of the particle and the magnetic field strength. It does not
depend on the velocity of the particle.

4.6 First let us compute the Lorentz force.
~F = q( ~E + ~v × ~B)

= q(Ê+ vı̂×Bk̂)

= q(Ê+ vB ı̂× k̂)
= q(Ê+ vB(−̂))
= q(E − vB)̂

So we see that the force will always be in the positive or negative y direction
with the sign being determined by the sign of q(E − vB).
(a) If v = E/B then q(E − vB) = 0, and the Lorentz force is zero.
(b) If v > E/B then (E − vB) < 0, and the Lorentz force in the negative
direction for a positive particle.
(c) and in the positive direction for negative particles.
(d) If v < E/B then (E − vB) > 0, and the Lorentz force in the positive
direction for a positive particle.

In words we can just say that when v = E/B the magnetic force and elec-
tric force is balanced. Since the magnetic force is proportional to the velocity
the magnetic force will be stronger when the velocity is greater than this “bal-
ancing” velocity and the electric force will be stronger if the velocity is lower
than the “balancing” velocity.

4.7 By the right-hand-rule we have, west, 0, up, down. We can also do this
problem more algebraicly. Set our coordinates so that ı̂ is east ̂ is north and k̂
is upward. In this system ~B = B̂ so that

~F = q~v × ~B = −e
(
vx ı̂+ vy ̂+ vz k̂

)
×B̂

= −eB
(
vx ı̂× ̂+ vy ̂× ̂+ vz k̂ × ̂

)
= −eB

(
vxk̂ + vy(0) + vz(−ı̂)

)
= −eB

(
vxk̂ − vz ı̂

)
Thus for (a) ~v = −vk̂ −→ vx = vy = 0 and vz = −v so that ~F =

−eB
(

0k̂ − (−v)̂ı
)

= −evBı̂ and the direction is west.

For (b) ~v = v̂ so ~F = 0.
For (c) ~v = −vı̂ so ~F = evBk̂ or up.
For (d) ~v = v√

2
(̂ı− ̂) so ~F = −e v√

2
Bk̂.

4.8 The field is in the positive z direction.

14
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4.9 This question is asking us to relate acceleration and force so we must start
with Newton’s second law.

Σ~F = m~a

q ~E + q~v × ~B = m~a

qEk̂ + qvı̂× (Bx ı̂+By ̂+Bz k̂) = mak̂

qEk̂ + qv(Bx(0) +Byk̂ −Bz ̂) = mak̂

(qE + qvBy −ma)k̂ + (−qvBz)̂ = 0
qE + qvBy −ma = 0 and qvBz = 0

By =
1
v

(
ma

q
− E

)
= −2.6× 10−3T and Bz = 0

Notice that we cannot determine Bx and indeed any value would give the same
results. The given measured quantities do not determine the B-field uniquely.

4.10 The magnetic force is due west. The component of the field perpendic-
ular to the velocity is the vertical component of the field which is B sin 60◦ so
the magnitude of the force is F = qvB⊥ = qvB sin 60◦= 2.6× 10−11N

4.11 Plug and chug.

~F = q~v × ~B = q

∣∣∣∣∣∣
ı̂ ̂ k̂
vx vy vz
Bx By Bz

∣∣∣∣∣∣ = e

∣∣∣∣∣∣
ı̂ ̂ k̂
2 −4 1
1 2 −3

∣∣∣∣∣∣ N
C

= e(10ı̂+ 7̂+ 8k̂)N
C

= (1.6ı̂+ 1.1̂+ 1.3k̂)× 10−18N

F = 2.34× 10−18N

4.12 Looks like we need to go back to the definition of work for this.

W =
∫

~F · d~s =
∫

(q~v × ~B) · d~s =
∫

(q~v × ~B) · ~vdt = 0

Since (q~v × ~B) must be perpendicular to ~v and thus the dot product is zero.

4.13 Since the field is uniform and the wires straight we can use the relation-
ship ~F = I~L× ~B with ~B = B̂ .

~Lab = −`̂ so ~Fab = I(−`̂)×B̂ = −I`B̂× ̂ = 0.
~Lbc = `k̂ so ~Fbc = I(`k̂)×B̂ = I`Bk̂ × ̂ = −I`Bı̂.

~Lcd = −`ı̂+ `̂ so ~Fcd = I(−`ı̂+ `̂)×B̂ = −I`Bk̂.
~Lda = `ı̂− `k̂ so ~Fda = I(`ı̂− `k̂)×B̂ = I`B(k̂ + ı̂).

Notice that the sum is zero.

4.14

R =
1
B

√
2mV
e

−→ R = 1.98cm

4.15 ∆K + ∆U = Wnc so Kf − 0 + q∆V = 0 thus v =
√
−2q∆V/m =√

2qV/m. Now that we have the velocity we can find the radius ΣF = ma −→
qvB = m v2

r −→ r = mv
qB

r =
mv

qB
=

m

qB

√
2qV
m

=
1
B

√
2mV
q

= 1.98cm

4.16 (a) up, (b) out, (c) none, (d) in.

4.17 ~a = Σ~F/m = [q ~E + q~v × ~B]/m = q
m [ ~E + ~v × ~B]. So

~a =
q

m
[50̂+ 200ı̂× (0.2ı̂+ 0.3̂+ 0.4k̂)]N

C

=
q

m
[50̂+ (0 + 60k̂ − 80̂)]N

C =
q

m
[60k̂ − 30̂]N

C

= 2.87× 109(2k̂ − ̂) m
s2

15
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5.1 From t = π/2 to t = π.
5.2 The peak of the parabola is at the point (0,1). With the parameterization
~r(t) = ~a+ bt̂ı+ ct2̂ the peak occurs when t = 0. So that ~a = 0ı̂+ 1̂, and

~r(t) = bt̂ı+ (1 + ct2)̂
Now we know for some value of t that we will reach the point (1,0) so that

~r(t) = bt̂ı+ (1 + ct2)̂ = 1ı̂+ 0̂ −→ bt = 1
1 + ct2 = 0

−→ c = −b2

so that
~r(t) = bt̂ı+ (1− b2t2)̂

This already goes through (-1,0) at t = −1/b, so that we are done. Note that
we can choose the parameter b as we like, so we might as well let b = 1 and
then

~r(t) = t̂ı+ (1− t2)̂

5.3 The parameterization is
~rs(t) = t̂ı

So
~rf − ~rs(t) = −t̂ı+ ŷ

|~rf − ~rs(t)|2 = t2 + y2

|~rf − ~rs(t)|3 = (t2 + y2)3/2

and
d~rs
dt

= ı̂

and
d~rs
dt
× [~rf − ~rs(t)] = ı̂× (−t̂ı+ ŷ) = yk̂

Now putting this into the parameterized form of the Biot-Savart law we find:

~B(~rf ) =
µ0I

4π

∫ d~rs
dt × [~rf − ~rs(t)]
|~rf − ~rs(t)|3

dt =
µ0I

4π

∫ b

a

yk̂

(t2 + y2)3/2
dt

=
µ0I

4πy

[
t√

t2 + y2

]b
a

k̂

5.4 The parameterization is
~rs(t) = a cos t̂ı+ a sin t̂

where t goes from 0 to θ. The field point is ~rf = 0. So
~rf − ~rs(t) = −a cos t̂ı− a sin t̂

|~rf − ~rs(t)|2 = a2 cos2 t+ a2 sin2 t = a2

|~rf − ~rs(t)|3 = a3

and
d~rs
dt

= −a sin t̂ı+ a cos t̂

and
d~rs
dt
× [~rf − ~rs(t)] = (−a sin t̂ı+ a cos t̂)× (−a cos t̂ı− a sin t̂) = a2k̂

Now putting this into the parameterized form of the Biot-Savart law we find:

~B(~rf ) =
µ0I

4π

∫ d~rs
dt × [~rf − ~rs(t)]
|~rf − ~rs(t)|3

dt =
µ0I

4π

∫ θ

0

a2k̂

a3
dt =

µ0I

4π
θ

a
k̂

5.5 By employing Ampere’s law we find that the field at a radius r is B(a) =
µoIin/2πa. But for a < R

Iin =
∫
J dA =

∫ a

0

J 2πrdr =
∫ a

0

I

2πRr
2πrdr = I

a

R

Thus

B(a) =
µoIin
2πa

=
µoI

a
R

2πa
=

µoI

2πR

For a > R we know that Iin = I so B = µoI/2πa.

5.6
(a) The force is repulsive.
(b)

5.7 B = µ0I/2πr = 2× 10−7T.

5.8 With k̂ along the axis of the loop of radius a the field at the center is

~B =
∫
d ~B =

µo
4π

∫
Id~s× r̂
r2

=
µo
4π

∫
Idsk̂

a2
=
µoIk̂

4πa2

∫
ds

=
µoIk̂

4πa2
2πa =

µoIk̂

2a
−→ a =

µoI

2B
= 31.4cm

5.9 It will take a time of ∆t = ∆x/v = 2πr/v = 1.56×10−16s for the electron
to go around the proton and thus electron current will be I = dq/dt = e/∆t =
1.0mA. From the previous problem the field at the center of a current loop is
B = µoI/2r = 11.9T

5.10 Since the point P is along the axis of the horizontal part of the wire this
wire will not contribute to the B-field at the point P . So lets just find the field

16
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do to the vertical part.

~B =
∫
d ~B =

µo
4π

∫
Id~s× r̂
r2

=
µoI

4π

∫
d~s× ~r
r3

=
µoI

4π

∫ 0

−∞

dŷ× ~r
r3

=
µoI

4π

∫ 0

−∞

̂× (xı̂+ ŷ)
(x2 + y2)3/2

dy

=
µoI

4π

∫ 0

−∞

−xk̂ + 0
(x2 + y2)3/2

dy = −µoI
4π

xk̂

∫ 0

−∞

dy

(x2 + y2)3/2

= −µoI
4π

xk̂

∫ 0

−π/2

x sec2 θdθ

(x2 + x2 tan2 θ)3/2

= −µoI
4π

xk̂

∫ 0

−π2

x sec2 θdθ

x3 sec3 θ
= −µoI

4πx
k̂

∫ 0

−π2
cos θdθ =

µoI

4πx
k̂

5.11 Since d~s and r̂ are parallel for the radial lines, these parts of the wires do
not contribute to the B-field at the point of interest. The field contributed by a
circular section of radius r and subtended angle θ is found just like in problem
30.3 but this time

∫
ds = ∆s = rθ so the field is Br,θ = µoI

4πr2 rθ = µoIθ
4πr . For the

circle at radius b the current is CW so that the field is into the paper at the
center while the circle at a is CCW and the field due to it is out of the paper.
Choosing out of the paper as k̂ we can write

~B = ~Ba,θk̂ +Bb,θ(−k̂) =
µoIθ

4π

(
1
a
− 1
b

)
k̂

Since b > a we know that this will be out of the page.

5.12 The magnitude of the B-field at a distance r from a long straight wire
is given by B = µoI

2πr . Thus the force on one wire is due to the field of the other
F = I1LB2 = I1L

µoI2
2πr . So we find that F

L = µoI1I2
2πr = 80µN/m.

5.13 Pick a circular path of radius r around the axis of the wire. We know that
the field follows this path and the field strength along this path is a constant,
so that

∮
~B ·d~s = B2πr. But Ampere’s law tells us that this must proportional

to the current through the closed path. Thus B2πr = µoIin and we can find
the field B = µoIin

2πr at a radius r if we can find Iin.

Iin =
∫
JdA =

∫ r

0

J2πrdr =
∫ r

0

J0

(
1−

(
r2

R2

))
2πrdr

= 2πJ0

(
1
2r

2 − 1
4

(
r4

R2

))
for r < R.

For r > R we find Iin = 2πJ0

(
1
2R

2 − 1
4

(
R4

R2

))
= 2πJ0

1
4R

2. Thus

B =
µoIin
2πr

=

{
µoJ0

(
1
2r −

1
4

(
r3

R2

))
for r < R

µoJ0
1
4
R2

r for r > R

If we let Bo = µoJ0R/4 and x = r/R then this becomes

B =
{
B0(2x− x3) for x < 1
B0

1
x for x > 1

Graphing B verses x we get the figure to the right. From the figure we can see
that the maximum occurs for x < 1 and thus we can maximize the function
B0(2x− x3) to find the maximum field.

dB/dx = B0(2− 3x2) = 0 −→ x =
√

2/3.
Thus rmax =

√
2/3R and Bmax =

√
32/27B0

5.14 As in previous problems with cylindrical symmetry, the field at a radius
r is B = µoIin/(2πr). At r = a the current through the loop is 1.00 A and out
of the page so that the field is CW and of magnitude B = 0.20mT. At r = b
the current through the loop is 2.00 A and into the page so that the field is
CCW and of magnitude B = 0.13mT.
5.15 Again by employing Ampere’s law we find that the field at a radius r is
B = µoIin/2πr. But for r1 < R

Iin =
∫
JdA =

∫ r

0

J2πrdr =
∫ r

0

br2πrdr =
2π
3
br3

For r = R we get the entire current so I = Iin = 2πbR3/3 so that we find
b = 3I/2πR3. Thus at a general radius r < R

Iin = I
r3

R3
−→ B =

µoIin
2πr

=
µo
2πr

I
r3

R3
=
µoIr

2

2πR3

For r > R we know that Iin = I so B = µoI/2πr.
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6.1 First redraw the figures with the induced field shown.

In quarters 1 and 3 the fields are in the same directions and the flux is de-
creasing, thus the induced field is helping out the decreasing flux trying to keep
it from decreasing. In quarters 2 and 4 the fields are in opposite directions
and the flux is increasing, thus the induced field is trying to stop the flux from
increasing.

6.2 We pick our Amperian loop to be a circle with radius r between the plates.
Then the magnetic field is parallel to the loop and the electric field is parallel
to the normal to the loop. Also there is no current density between the plates
so we can simplify Ampere’s law as follows.∮

~B · ~d` = µ0

∫
~J · ~dA+ µ0ε0

d

dt

∫
~E · ~dA

B2πr = 0 + µ0ε0
d

dt

[
atπr2

]
B2πr = µ0ε0aπr

2

B = 1
2µ0ε0ar = 1.0× 10−8T

Notice that the induced magnetic field is very small compared with the electric
field that is causing it.

6.3 The loop rule gives us.
VS − E −∆V = 0

−→ VS − L
dI

dt
− IR = 0

(a) There is a steady state solution to the above equation: Iss(t) = VS/R. Let
us try a solution of the form

I(t) = f(t) + VS/R −→
dI

dt
=
df

dt

Substituting this into VS − LdIdt − IR = 0 we find

VS − L
df

dt
−
(
f(t) +

VS
R

)
R = 0

−→ −Ldf
dt
− f(t)R = 0

−→ df

dt
= −R

L
f(t)

−→ f(t) = Ce−
R
L t

−→ I(t) = Ce−
R
L t +

VS
R

Now we know that at t = 0 the current is zero so that

0 = Ce0 +
VS
R
−→ C = −VS

R

−→ I(t) =
VS
R

[
1− e−RL t

]
(b)

E = L
dI

dt
= L

VS
R

R

L
e−

R
L t = VSe

−RL t

(c)
∆V = IR = VS

[
1− e−RL t

]
(d) The loop rule says the following sum should be zero.

Vs − E −∆V = Vs − VSe−
R
L t − VS

[
1− e−RL t

]
= 0 OK

(e)

6.4
(a)

Pavg = I2
0R/2 −→ I2

0R = 2Pavg = 120W

(b) But the supply from the outlet is 120 volts so that

I0R = V0 = (120V)
√

2 = 170V

18
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Combining these two equations we can solve for the current:

I0 =
I2
0R

I0R
=

120W
170V

= 0.706A

Now we can compute

R =
I0R

I0
=

170V
0.706A

= 240Ω

(c) Yes.

6.5 Kirchhoff’s loop rule gives us that
VS(t)− VL(t)− VR(t) = 0 −→ VS(t) = VL(t) + VR(t)

In the phasor diagram this implies that the sum of the phasors for VL and VR
must be equal to the phasor of the source voltage VS . Since the resistor phasor
is parallel to the current phasor we know that the phasors for VL must lead the
phasor for VR by 90◦. Thus the sum (also VS) forms the hypotenuse of a right
triangle.

Since the lengths of the phasors are the amplitudes of the voltages we can use
the pythagorian theorem to find that

V 2
S0

= V 2
R0

+ V 2
L0

= (RI0)2 + (ZLI0)2

−→
V 2
S0

I2
0

= R2 + Z2
L

VS0

I0
=
√
R2 + Z2

L =
√
R2 + (ωL)2

Now we can find the gains.

GR(ω) ≡ VR0

VS0

=
VR0/I0
VS0/I0

=
R√

R2 + (ωL)2
=

1√
1 + (ωL/R)2

GL(ω) ≡ VL0

VS0

=
VL0/I0
VS0/I0

=
ωL√

R2 + (ωL)2
=

1√
(R/ωL)2 + 1

We see that the resistor has a higher gain for low frequencies.

6.6 From the loop rule we find
VS(t) = VR(t) + VL(t) + VC(t)

From the phasor diagram we see that the amplitude of VS forms the hypotenuse
of a right triangle with the other two sides having lengths (VR0) and (VL0−VC0).
Thus from the pythagorian theorem we find the following.

V 2
S0

= V 2
R0

+ (VL0 − VC0)2 = (RI0)2 + (ZLI0 − ZCI0)2

Solving for I0 we find

I0 =
1√

R2 + (ZL − ZC)2
VS0

This will be maximized when the denominator is minimized, and this will occur

when ZL = ZC that is when ω is such that ωL = 1
ωC −→ ω =

√
1
LC .

6.7 Φ1 = ~B · ~A1 = −BA1 cos θ. The total flux Φ1 + Φ2 = 0 since together
they form a closed surface and

∮
~B · d ~A = 0. Thus Φ2 = −Φ1 = BA1 cos θ.

6.8 I = V
R = NdΦ/dt

R = NA∆B
R∆t = 200(0.20m2)(1.6T)

R(0.020s) = 160A.

6.9 E = − d
dtΦ = − d

dt [ABoe
−t/τ ] = ABo

τ e−t/τ .

6.10 Since we know that the field is parallel to the normal of the area at all
points we can write Φ =

∫
~B · d ~A =

∫
BdA. But he field strength at a distance

r from a current carrying wire is B = µoI
2πr so we can write the integral over the
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area as an integral over r with the area elements dA = cdr.

Φ =
∫
BdA =

∫ a+b

a

µoI

2πr
cdr =

µoIc

2π
ln
(
a+ b

a

)
Thus

E = −N dΦ
dt

= −N µoc

2π
ln
(
a+ b

a

)
dI

dt

= −N µoc

2π
ln
(
a+ b

a

)
Ioω cos(ωt+φ)

6.11 Picking a closed loop of radius r as the path we can use
∮
~E · d~s =

− d
dt

∫
~B · d ~A to find the electric field. Since we know that ~B is perpendicular

to the area and ~E is parallel to the perimeter, this integral equation becomes∮
~E · d~s = − d

dt

∫
~B · d ~A −→ E2πr = − d

dt
BA.

But − d
dtBA = −AdB

dt = −πr2(0.060t T). So that we find E = − 1
2r(0.060t T) =

−0.0018N/C. The negative in this case implies CCW since the direction im-
plicitly chosen for the normal to the area was in the direction of B and thus
the direction of the path was CW.

6.12 As in the previous problem

E2πr = − d

dt
BA −→ E = − 1

2πr
A
dB

dt
.

But this time AdB
dt = πR2(6.0t2 − 8.0t)T. So that

E = −R
2

r
(3.0t2 − 4.0t)T = (−0.375t2 + 0.5t)N/C

At t = 2.0s we find E = −(0.5)N/C the negative again indicates a CCW field.
The force on an electron will then be F = qE = eE = 8.0× 10−20N in the CW
direction.

6.13 Q =
∫
dq
dt dt =

∫
Idt =

∫
V
Rdt =

∫
N
R
dΦ
dt dt = N

R

∫
dΦ = N

R∆Φ =
N
R∆[BA] = N

R∆[B]A = N
R [Bf −Bi]A = 200

5.0Ω [2.20T](0.01m2) = 0.88C.

6.14 The flux is Φ =
∫
~B · d ~A = ~B · ~A = BA cosωt. Thus E = −dΦ/dt =

BAω sinωt = (3.016V) sinωt, and the current is I = E/R = (BAω/R) sinωt =
(3.016A) sinωt. The power dissipated in the loop is P = IV = (9.096J) sin2 ωt.
From the force on a current is F = I~L× ~B we find that the torque on a current
loop is τ = I ~A× ~B = IAB sinωt = (A2B2ω/R) sin2 ωt

6.15
(a) φ = Nµ0nIa

2

(b) φ = Nµ0nIc
2

6.16 Look at the loops from the side:

A B

(a) Increasing the current means the magnetic field increases, meaning the
magnetic flux through loop B is increasing. Thus, the current induced in B
must cause a magnetic field opposite that of the field caused by A. So the
current flows clockwise. (b) Since the magnetic field of B is opposite that of
A, they act like magnets with like poles facing each other–they repel. If the
current is decreasing, then the induced field, and so the induced current flows
in the opposite direction as before. In this case the loops will attract.

6.17

NS

(a) As the magnet moves toward the loop, the flux through the loop will in-
crease. After the magnet is halfway through the loop, the flux will begin to
decrease. A graph of flux versus time will look something like:

I

tt1

(b) As the magnet moves in, the induced current will be counterclockwise since
the induced magnetic field will be opposite the magnet’s field. Using positive
current as counterclockwise, the derivative of the curve above gives:

ΦB

tt1

6.18
(a) After the switch has been closed for a long time, the inductor acts just like
a wire, so the current flowing through the 100Ω resistor is zero and the current
flowing through 10Ω resistor is I0 = 10/10 = 1A. This is also the current flowing
through the inductor.
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(b) Open the switch, at that instant there is a current flowing through the
inductor which begins to immediately flow through the 100 Ω resistor. The
initial current through the 100 Ω resistor is 1A, so the initial potential difference
is VR = VL = (1A)(100Ω) = 100V.
(c) The current falls exponentially:

I(t) = I0e
−t(100Ω/2H) = (1A)e−50t.

6.19 E = LdI/dt = L∆I/∆t = 100V.

6.20 For a solenoid L = µoN
2A/` = 13.6mH.

6.21 E = LdI/dt = LImaxω cosωt = (18.8V) cosωt.

6.22

R 2R

R LV

I1 I2

I3

Let us write out Kirchhoff’s rules.
I1 = I2 + I3

V − I1R− I3R = 0

I3R− I22R− LdI2
dt

= 0

We can rewrite the first two equation to give us I1 = 1
2 (VR + I2) and I3 =

1
2 (VR − I2) Putting this into the third equation gives us

1
2 (
V

R
− I2)R− I22R− LdI2

dt
= 0

V − 5I2R− 2L
dI2
dt

= 0

Which can be solved by separation of variables. With the initial condition I = 0
at t = 0 the solution is

I2 =
V

5R
(1− e−5Rt/2L) = (0.5A)(1− e−t/τ ) with τ = 0.1s.

This then gives us
I1 = 1

2

(
V
R + I2

)
= 1

2

(
V
R + V

5R (1− e−t/τ )
)

= V
10R (6− e−t/τ ).

6.23 Taking the derivative we find that
dI/dt = Ioe

−t/τ (−1/τ) = I(−R/L).
Plugging this in we find that

LdI/dt = −IR and IR+ LdI/dt = 0.

6.24 The energy is UB = 1
2LI

2 = 1
2µoN

2AI2/` = 2.4µJ .

6.25 The capacitor initially be charged to a potential E and will thus have an
initial (and max) charge of q0 = CE .

LC

I

After the switch is thrown the battery and resistor are effectively removed from
the circuit and thus we just have an LC circuit with an initial charge of q0 = CE .

VC + VL = 0 −→ q

C
+ L

dI

dt
= 0 −→ d2q

dt2
= − q

LC

Which has the solution q = qo cosωt with ω = 1/
√
LC. This leads us to the

current I = dq/dt = −qoω sinωt. The total energy in this ideal circuit is a
constant so we can just find the initial energy which is the energy stored on the
capacitor U = 1

2QV = 1
2qoE = 1

2CE
2.

6.26 Over the time interval (0, T ) (where T is the period) the voltage can be
written as V = at+ b = 2Vmax

T t− Vmax thus

Vrms =
√

1
T

∫ T
0
V 2dt =

√
V 2

max
T

∫ T
0

( 4
T 2 t2 − 4

T t+ 1)dt = Vmax√
3

.

6.27 Pave = 1
T

∫ T
0
Pdt = 1

T

∫ T
0

V 2

R dt = 1
T

∫ T
0

V 2
max sin2 ωt

R dt so that Pave =
V 2

max
2R −→ R = V 2

max
2Pave

. Thus we find that R75W = 192Ω and R100W = 145Ω.

6.28 I = Imax sinωt −→ VL = LdI/dt = LImaxω cosωt, and we see that
Vmax = LImaxω. Using this we can find L = Vmax/Imaxω = 42mH. Also
ω = Vmax/LImax = 942 rad

s

6.29 If the capacitor is to begin uncharged then the voltage must begin at
zero so V = Vo sinωt. But

q = CV = CVo sinωt
so that

I =
dq

dt
= CVoω cosωt = C

√
2Vrmsω cosωt

and thus I(1/180s) = −32A.

6.30 XC = 1/ωC . Thus if XC < 175Ω then ω > 1/(C175Ω) = 260 rad
s −→

f > 41Hz. The impedance for a capacitor that is twice as big will be half so
this is XC < 88Ω.

6.31 q = CV = CVmax cosωt, while I = dq/dt = −CVmaxω sinωt.

6.32 XC = XL −→ 1/ωC = ωL −→ ω = 1/
√
LC = 17.5 × 103 rad

s −→
f = 2.79kHz.

6.33 The inductive impedance isXL = ωL = 78.5Ω. The capacitive impedance
is XC = 1/ωC = 1.59kΩ.
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I0

I0 XC

I0 XL
I0R I0

I0 XC

I0 XL

I0R

I0 Z

φ

By the figure we see that

Z =
I0Z

I0
=
√
R2 + (XL −XC)2 = 1.52kΩ

and that
tanφ = (XL −XC)/R −→ φ = −84.3◦.

The maximum current is Imax = Vmax/Z = 138mA. This current will lead the
voltage by 84.3◦.
6.34 As in the previous problem,

tanφ = (XL −XC)/R −→ φ = 17.4◦.
Which implies that the voltage reaches a maximum 17.4◦ before the current.
6.35 Since Z =

√
R2 + (XL −XC)2 the maximum current (smallest Z) will

be when XC = XL −→ ωres =
√

1
LC = 996 rad

s . Thus f = 159Hz.

6.36 At f = 99.7MHz we need XC = XL −→ C = 1/ω2L = 1.82pF.
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7.1 √
1

µ0ε0
=

√
1

(4π × 10−7N/A2)(8.854187817× 10−12C2/N ·m2)

= 2.99792458× 108

√
A2 ·m2

C2

= 2.99792458× 108

√
m2

s2
= 2.99792458× 108 m

s

7.2 x = A cosφ −→ φ = cos−1[x/A] = cos−1[1.4/3.2] = cos−1[0.4375] So
φ = ±1.12rad = ±64.06◦

7.3
(a) φ = 0.
(b) φ = π.
(c) φ = π/2.
(d) φ = 3π/2.
(e) v = dx/dt = −Aω sin(ωt+ φ0). So

v0

x0
=
−Aω sin(0 + φ0)
A cos(0 + φ0)

= −ω tanφ0

So
φ0 = tan−1 −v0

x0ω
= tan−1(−0.3) = −0.291 rad

Note that the other possible angle with the same tangent would be in the second
quadrant, but since our position and velocity are both positive we know that
our angle must be in the fourth quadrant.
7.4 The oscillator goes through a complete cycle when the phase increases by
2π. Thus

∆φ = 2π −→ ωT = 2π −→ ω =
2π
T

= 251.3 rev
s

7.5 A = 2, λ = 3m, T = 6s, f = 1
6Hz, ω = π

3
rad
s , k = 2π

3 m−1, v = 1
2

m
s ,

y(x, t) = 2 cos( 2π
6s t−

2π
3mx) = 2 cos(1.0472 t− 2.0944 x).

7.6 λf = c −→ λ = c/f = 0.10m.
7.7 λf = c −→ λ = c/f = 3.19m.
7.8

∆φ = φ2 − φ1 = −kr2 + kr1 = k(r1 − r2) = k 2x =
2π
λ

2x

Also A2 = 2A1 so that
A2 = A2

1 +A2
2 + 2A1A2 cos(φ2 − φ1)

= A2
1 + (2A1)2 + 2A1(2A1) cos(

2π
λ

2x)

= A2
1

[
5 + 4 cos(

2π
λ

2x)
]

7.9

Δr = 0

Δr = 1

Δr = 2

Δr = -1

Δr = -2

The maximum and minimum occur when ∆r is an even and odd multiples of
λ/2. So when the wavelength is 1cm the even multiples of 0.5cm are the lines
we drew. So we drew the maximums for a wavelength of 1cm. The minimums
would be half way between the lines we drew. If the wavlength is 2cm then half
the wavelength is 1cm and the maximum will occur at the lines with ∆r = 0,±2
while the minimums will be a the lines with ∆r = ±1.

7.10 The maximum at 40 cm must be the maximum that corresponds to the
first even multiple, since it is the first maximum from the central maximum
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(the zeroth multiple). Thus

d sin θ = 2
λ

2
= λ

But we can also tell by the geometry of the setup that

tan θ =
40cm
300cm

=
4
30

Combining these we find that
λ = d sin θ = (10cm) sin

(
tan−1(4/30)

)
= 1.32cm

7.11 The reflection from the front face of the bubble is air-water thus the
index of refraction change is low-high and there will be a reflection phase shift.
The front path has a phase of φA = −kr + π. The reflection from the back
face of the bubble is water-air or high-low, so there is no reflection phase shift
on this path: φB = −kr. The phase difference between the paths is then
φA − φB = k∆r + π = 2π

λ′ ∆r + π = 2π
λ′ 2t + π. Now we see that if t � λ then

2π
λ′ 2t ≈ 0 and φA − φB ≈ π. So as the film gets thin the reflection becomes a
minimum not a maximum.

7.12 The path difference is ∆ =
√
d2 + 12−1, where d is measured in meters.

For the minimum d, ∆ = λ/2. So,√
d2 + 12 − 1 =

λ

2
−→ d2 =

(
1 +

λ

2

)2

− 1 = .103.

−→ d = .32m.

7.13 The reflections are both the same so there is no phase difference due to
the reflections and

∆φ = ∆φpath + ∆φreflection = 2π
∆L
λ′

+ 0.

Since the reflections are a minimum we know that this phase difference is an
odd multiple π. But since we want the minimum thickness this will be the first
odd multiple (1) and we find that

2π
∆L
λ′

= (1)π.

Also we know that the path difference is twice the thickness of the film so
that ∆L = 2t and we find using our condition above that

t =
λ′

4
=
λ/n

4
= 96nm.

7.14 This time the reflections are not the same and so we do have a half cycle
phase difference due to the reflection

∆φ = 2π
∆L
λ′

+ π

The reflections are strong so this must be constructive interference and the

phase difference is an even multiple of π:

∆φ = 2π
∆L
λ′

+ π = mπ for m even

Again ∆L = 2t so that

2π
2t
λ′

+ π = mπ −→ 4t = (m− 1)λ′ for m even

But if m is even then k = m− 1 is odd so
4t = kλ′ for k odd

Now the film is reflective for both red and green so
4t = kredλ

′
red and 4t = kgreenλ

′
green

But t is the same for both (there is only one film). Thus

kgreenλ
′
green = kredλ

′
red −→

kred

kgreen
=
λ′green

λ′red

=
5
7

The lowest odd integer k’s that will give this ratio are kred = 5 and kgreen = 7.
Thus

t = kredλ
′
red/4 = 5λ′red/4 = 5λred/4n = 658nm

7.15 One path has no reflections so there is no phase shift of this path due to
reflections. The other path has two hard reflections and thus has two half cycle
phase shifts or a total of a full cycle phase shift due to reflections. Thus there
is effectively no phase difference (one cycle) due to the difference in reflection
of the two paths, and the phase difference is due totally to the path difference
(∆L = 2d). Since we are looking for the first constructive interference we know
that

2π
∆L
λ

= ∆φ = 2π −→ d = λ/2 = 280nm

7.16 We know that the path difference at an angle θ from the central maxi-
mum is given by

∆L = d sin θ

where d is the slit spacing. Also we know that the phase difference caused by
this path difference is

∆φ = 2π
∆L
λ

and that for interference maximums and minimums
∆φ = nπ

where n is an integer. Plugging the first and the third equations into the second
we get

nπ = 2π
d sin θ
λ

−→ d sin θn = n
λ

2
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θ

D

Slit Screen
Observation
Screen

Intensity
Pattern

n = 0
n = 1
n = 2
n = 3
n = 4
n = 5

x4

From the geometry of the situation we see that

sin θn =
xn
D

where xn is the position of the nth extreme. Substituting this into our previous
expression we find

d
xn
D

= n
λ

2
−→ xn = n

λD

2d
= n(1.31mm)

Thus x2 − x0 = 2.62mm and x3 − x1 = 2.62mm.

7.17 As in the last problem we find

d sin θn = n
λ

2
−→ sin θn = n

λ

2d
We are given the speed and frequency so that we can find the wavelength
λ = vT = v/f = 0.177m. With this wavelength we can find the angle of the
first maximum.

sin θ2 = 2
λ

2d
−→ θ2 = 36.1◦

For the microwave:
d =

λ

sin θ
= 5.1cm

For d = 1µm:

λ = d sin θ = 590 −→ f =
c

f
= 5.1× 1014Hz

7.18 Use the trig identity:

cosα+ cosβ = 2 cos
1
2

(α+ β) cos
1
2

(α− β) .

α+ β = ωt− kd1 + δ + ωt− kd2 = 2ωt− k(d1 + d2) + δ

α− β = ωt− kd1 + δ − (ωt− kd2) = k(d2 − d1) + δ

−→ y1 + y2 = 2A cos
1
2

(2ωt− k(d1 + d2) + δ) cos
1
2

(k(d2 − d1) + δ)

= 2A cos
(
ωt− k

2
(d1 + d2) +

δ

2

)
cos
(
k

2
(d2 − d1) + δ

)

y1+y2

y1+y2

y1+y2

y1+y2

δ="/8

δ="/4

δ="/2

δ="

7.19 There is a path difference in getting from the source to the slits d sin θ1

and a path difference in going from the slits to the observation point so that the
total path difference is the sum of the two. We must be careful though since
the top ray goes farther on the first leg and shorter on the second leg so that

∆L = (d sin θ1) + (−d sin θ2).
So we find the max and mins for even and odds as always: use

∆φ = 2π
∆L
λ

and ∆φ = nπ

to find

∆L = n
λ

2

We will have an interference maximum when n is even. So if n = 2m with m
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an integer we will have an interference maximum and

∆L = 2m
λ

2
= mλ −→ d(sin θ1 − sin θ2) = mλ

Thus
sin θ1 − sin θ2 = mλ/d

7.20 The reflections are both the same so there is no phase difference due to
the reflections and

∆φ = ∆φpath + ∆φreflection = 2π
∆L
λ′

+ 0.

Since the reflections are a minimum we know that this phase difference is an
odd multiple π. But since we want the minimum thickness this will be the first
odd multiple (1) and we find that

2π
∆L
λ′

= (1)π.

Also we know that the path difference is twice the thickness of the film so that
∆L = 2t and we find using our condition above that

t =
λ′

4
=
λ/n

4
= 96nm.

7.21 This time the reflections are not the same and so we do have a half cycle
phase difference due to the reflection

∆φ = 2π
∆L
λ′

+ π

The reflections are strong so this must be constructive interference and the
phase difference is an even multiple of π:

∆φ = 2π
∆L
λ′

+ π = mπ for m even

Again ∆L = 2t so that

2π
2t
λ′

+ π = mπ −→ 4t = (m− 1)λ′ for m even

But if m is even then k = m− 1 is odd so
4t = kλ′ for k odd

Now the film is reflective for both red and green so
4t = kredλ

′
red and 4t = kgreenλ

′
green

But t is the same for both (there is only one film). Thus

kgreenλ
′
green = kredλ

′
red −→

kred

kgreen
=
λ′green

λ′red

=
5
7

The lowest odd integer k’s that will give this ratio are kred = 5 and kgreen = 7.
Thus

t = kredλ
′
red/4 = 5λ′red/4 = 5λred/4n = 658nm

7.22 The figure below indicates the paths of the two waves.

0.05 mm

x

L

The wave that reflects at the glass-air interface has no phase shift due to re-
flection. The air-glass reflection gains a phase π due to reflection. The path
difference between the two waves is 2 times the width of the gap (for near nor-
mal incidence). The width of the gap varies as the distance form the end. If x
is the distance for the left end (where the plates meet), then the width of the
gap is

y = x
t

L
,

where t = .05 mm is the gap at the right end. Thus, the total phase difference
between the two reflected rays is:

∆φ = π +
2π
λ

(2y) = π +
2π
λ

(2x)
t

L
.

For a bright fringe the phase difference must be a multiple of 2π, so

2πm = π +
2π
λ

(2y) = π +
2π
λ

(2x)
t

L
.

−→ x

L
= m

λ

2t
−→ ∆x

L
=

λ

2t
,

where ∆x is the distance between fringes. The number of fringes along the
entire length will be:

L

∆x
=

2t
λ

= 166.7 −→ 166.

7.23 d sin θ = mλ determines the angles where the bright maxima occur for
two slits separated by a distance d, while a sin θ = mλ determines the angles
where the dark minima occur for a single slit of width a.

7.24 This first minimum occurs when a sin θ = λ. There is no angle that
satisfies this if λ > a since sin θ is always less then one. Thus if a < 637.8nm
there are no diffraction minima.

7.25 As in ID.4 we find the positions (xn) on the screen where the phase
difference is nπ between the two sides of the slit, to be

xn = n
λD

2a
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where a is the slit width. The difference is that now, (for a single slit), the
minima occur when this phase difference is an even multiples of π. The first
minimum occurs for n = 2 and the third minimum at n = 6 thus

(3.0mm) = x6 − x2 = 6
λD

2a
− 2

λD

2a
= 4

λD

2a
−→ a = 230µm

7.26 d sin θ = λ for the first order principal maximum. Compute θ using
tangent:

θ = tan−1

(
.488
1.72

)
= 15.8◦.

Using d = 1/5310 = 1.88× 10−6 m:
λ = (1.88× 10−6) sin(15.8◦) = 512nm

7.27 When the lanterns subtend the minimum angle θlanterns at the observer
the images on the retina are just resolved. This means that the central maxi-
mum of one image falls on the first minima of the other. For a circular aperture
of diameter D the first diffraction minimum occurs when D sin θmin = 1.22λ
where θmin is the angle between the central maximum and the first minimum.
The angle between the images is the same as the angle between the objects
(think of the rays going through the center of the lens) so that θlanterns = θmin. If
we let x be the distance between the lanterns and L the distance to the lanterns
we find that sin θmin = x/L and thus that xD/L = 1.22λ −→ x = 50cm.
7.28 It is obvious that the answer is 47.4429 since

x =

√√√√√
∫∞
−∞ f(t, t′)esinωt′dt′

1 + 1
1+ 1

1+ 1
t
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8.1 Let us assume that the person is about d = 1.7m tall. The sun has a
diameter of D = 1.4 × 106km and is at a distance of R = 1.5 × 108km. Note
that if the person was about three times larger she would be about the same
size as the sun. Thus if we let r be the distance between the person and the
camera then by similar triangles we have that

3d
r

=
D

R
−→ r = 3d

R

D
= 546m

8.2 By complementary angles we find that.

β

x = α/2
x

y = 90°- x
y

x
x

Now using Snell’s law we find

sin(β +
α

2
) = n sin

α

s
and thus

2β = 2 arcsin(n sin
α

2
)− α

8.3 To Be Done
8.4 To Be Done
8.5 To Be Done
8.6 To Be Done
8.7 To Be Done
8.8 First note that for a diverging lens f < 0 so 1

f < 0 also. Now use the thin
lens equation:

1
xo

+
1
xi

=
1
f

−→ 1
xo

=
1
f
− 1
xi

−→ 1
xo

<
1
f

since xi > 0

−→ 1
xo

< 0 since
1
f
< 0

−→ xo < 0

8.9
(a) From the magnification equation we find that

xo = −yo
yi
xi = −−8mm

2.0m
(10m) = 40mm

(b) Now that we have the object distance we can find the focal length from the
thins lens equation.

f =
(

1
xo

+
1
xi

)−1

=
(

1
40mm

+
1

10, 000mm

)−1

= 39.8mm

8.10 Once again we invoke the thin lens and magnification equations to find
xi = −12.3cm and yo/yi = 0.615.

Object Image

8.11 For p = 40 and f = +10, q = 13.33. So, M = −1/3. Thus, the image is
located 13.33 cm behind the lens, it is inverted, and smaller.
8.12
(a) The ray diagram is sketched below. Here are calculations:

1
q1

+
1
p1

=
1
f
−→ 1

q1
+

1
20

=
1
10
−→ q1 = 20cm.

The first image is 20 cm to the right of the first lens, which means it is an object
+15 from the second lens:

1
q2

=
1
10
− 1

15
−→ q2 = +30cm.

(b) The final image is real and upright.
(c) The magnification is compound:

M = m1 ·m2 =
−q1

p1

−q2

p2
= +2.

Final
Image

8.13 The ray diagram is below. Since the object is at the first lens’ focal
point, the image is at infinity. Since the image is at infinity, the object for the
second lens is at infinity, so it is formed at the second lens’ focal point.

Final
Image

f1 f1 f2f2
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8.14 Since the image is upright hi > 0, and we are given hi = 4ho. But
q
p = − hi

ho
= −4 −→ q = −4p. We see that p is negative which is as we expect

since the image is upright and thus virtual (virtual is when the image is where
the light does not actually go, this is on the far side of a mirror). Using the
thin lens equation 1

q + 1
p = 1

f we find

1
−4p

+
1
p

=
1
f
−→ p =

3
4
f = 30cm −→ q = −120cm

Let us check this with the ray diagram.

30 cm

40 cm

120 cm

Object Image

8.15 Use the thin lens equation 1
q + 1

p = 1
f to find the image position q = pf

p−f .
Thus since f = 30cm for p = 90cm we have q = 45cm with hi

ho
= − qp = − 1

2 ,
while for p = 20cm we have q = −60cm with hi

ho
= 3 .

Object

Image

Object

Image

8.16 Here’s what you should figure out using 1
p + 1

q = 1
f , with f = R/2, and

M = −q
p :

• p < f virtual, erect image with M > 1
• f < p < 2f real, inverted image with M > 1
• p > 2f real, inverted image with M < 1
8.17 (b) The mirror must be concave, since a convex mirror will always pro-
duce a diminished, virtual image. (a) Using the magnification as 5.5:

M = −q
p

= 5.5,

with p = 2.1. Thus,
q = −Mp = (5.5)(2.1) = −11.5cm.

Find f :
1
f

=
1
p

+
1
q
−→ f = 2.57 −→ R = 2f = 5.13cm.
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