General Physics II - Spring 2019
Homework Solutions to problems from Giancolli 7th Edition
Thermal Physics Problems

1 Fundamental Equations

Ideal gas:

$$
\begin{gathered}
P V=N \frac{2}{3} \bar{K}_{\text {trans }} \\
\bar{K}_{\text {trans }}=3 \frac{1}{2} k T
\end{gathered}
$$

Each degree of freedom has on average $\frac{1}{2} k T$.

Heat Capacity:

$$
C=\frac{d U}{d T}
$$

Specific Heat:

$$
c=\frac{C}{m}
$$

Molar specifice heat:

$$
c=\frac{C}{n}
$$

For a monotonic idea gas the total internal energy is

$$
U=N 3 \frac{1}{2} k T \longrightarrow \frac{d U}{d T}=N 3 \frac{1}{2} k
$$

so

$$
c=\frac{C}{n}=\frac{d U / d T}{N / N_{A}}=\frac{N 3 \frac{1}{2} k}{N / N_{A}}=3 \frac{1}{2} k N_{A}=3 \frac{1}{2} R
$$

Latent Heat:

$$
Q=m \ell
$$

Heat Conduction:

$$
\frac{d Q}{d t}=k A \frac{d T}{d x}
$$

Radiation:

$$
\frac{d Q}{d t}=\sigma \epsilon A T^{4}
$$

14.15 The change in the temperature of the glass is

$$
\Delta T_{g}=T_{\text {final }}-T_{\text {initial }}=41.8^{\circ} \mathrm{C}-23.6^{\circ} \mathrm{C}=18.2 C^{\circ}
$$

while the change in temperature of the water is

$$
\Delta T_{w}=T_{\text {final }}-T_{\text {initial }}=41.8^{\circ} \mathrm{C}-T
$$

where T is the unknown initial temperature of the water. The change in internal energy of the glass is

$$
\Delta U_{g}=m_{g} c_{g} \Delta T_{g}
$$

where c_{g} and m_{g} are the specific heat and mass of the glass. The change in internal energy of the water is

$$
\Delta U_{w}=m_{w} c_{w} \Delta T_{w}
$$

where c_{w} and m_{w} are the specific heat and mass of the water. Since the net change in energy is zero we know that

$$
\begin{align*}
0 & =\Delta U_{g}+\Delta U_{w} \tag{1}\\
\longrightarrow-\Delta U_{w} & =\Delta U_{g} \tag{2}\\
\longrightarrow-m_{w} c_{w} \Delta T_{w} & =m_{g} c_{g} \Delta T_{g} \tag{3}\\
\longrightarrow-\Delta T_{w} & =\frac{m_{g} c_{g}}{m_{w} c_{w}} \Delta T_{g} \tag{4}\\
\longrightarrow T-41.8^{\circ} C & =\frac{m_{g} c_{g}}{m_{w} c_{w}} \Delta T_{g} \tag{5}\\
\longrightarrow T & =41.8^{\circ} C+\frac{m_{g} c_{g}}{m_{w} c_{w}} \Delta T_{g} \tag{6}\\
\longrightarrow T & =41.8^{\circ} \mathrm{C}+\frac{(31.5)(840)}{(135)(4186)} 18.2 C^{\circ}=42.7^{\circ} \mathrm{C} \tag{7}
\end{align*}
$$

That $\Delta U_{g}+\Delta U_{w}=0$ is an approximation based on the assumption that the energy exchanged to the environment is negligible over the time period of the measurement. This seems reasonable if the measurement is quick, because the amount of energy moved by conduction and radiation is proportional to the time of the transfer, so a short time means there is a small amount of energy transferred by conduction and radiation.
14.25 First the silver must be warmed from $25^{\circ} \mathrm{C}$ to the temperature at which it will melt $961^{\circ} \mathrm{C}$. This requires an amount of energy

$$
\begin{align*}
Q_{\text {warm }} & =m c \Delta T=(23.5 \mathrm{~kg})\left(230 \frac{\mathrm{~J}}{\mathrm{~kg} \cdot C^{\circ}}\right)\left(961^{\circ} \mathrm{C}-25^{\circ} C\right) \tag{9}\\
& =(23.5 \mathrm{~kg})\left(0.23 \frac{\mathrm{~kJ}}{\mathrm{~kg} \cdot C^{\circ}}\right)\left(961^{\circ} C-25^{\circ} C\right) \tag{10}
\end{align*}
$$

Once it is to this temperature then we must supply the latent heat in order to melt it.

$$
Q_{\mathrm{melt}}=m \ell_{f}=(23.5 \mathrm{~kg})\left(88 \frac{\mathrm{~kJ}}{\mathrm{~kg}}\right)
$$

So the total energy required is

$$
Q_{\text {total }}=Q_{\text {warm }}+Q_{\text {melt }}=7.13 \mathrm{MJ}
$$

14.46 The total power will be

$$
P=\frac{d E}{d t}=\sigma \epsilon A T^{4}=\sigma(1) 4 \pi R^{2} T^{4}=3.2 \times 10^{26} \mathrm{~W}
$$

At the earth this power is spread over a sphere with a radius of the radius r of the earths orbit. Thus the power per area is

$$
I=\frac{P}{A}=\frac{P}{4 \pi r^{2}}=1.1 \frac{\mathrm{~kW}}{\mathrm{~m}^{2}}
$$

14.59 We assume that energy is conserved so that

$$
\Delta K+\Delta U=0
$$

thus

$$
\begin{aligned}
& \frac{1}{2} m \Delta v^{2}+m c \Delta T=0 \\
& \Delta T=-\frac{\Delta v^{2}}{2 c} \\
& =-\frac{v_{f}^{2}-v_{i}^{2}}{2 c} \\
& \\
& =\frac{v_{i}^{2}-v_{f}^{2}}{2 c}=0.14 C^{\circ}
\end{aligned}
$$

14.60 The rate of conducted energy is

$$
P=k A \frac{d T}{d x}
$$

So the power per area is

$$
I=\frac{P}{A}=k \frac{d T}{d x}=0.80 \frac{\mathrm{~W}}{C^{\circ} \cdot \mathrm{m}} \frac{1.0 C^{\circ}}{30 \mathrm{~m}}=0.027 \frac{\mathrm{~W}}{\mathrm{~m}^{2}}
$$

This is very much less than the intensity of the sunlight $1000 \mathrm{~W} / \mathrm{m}^{2}$. The total energy conducted in 1 hour is

$$
\Delta E=I A \Delta t=I 4 \pi R^{2} \Delta t=I 4 \pi R^{2}(3600 \mathrm{~s})=4.9 \times 10^{16} \mathrm{~J}
$$

The total solar energy absorbed in 1 hour is

$$
\Delta E_{\text {sun }}=I_{\text {sunlight }} A \Delta t=I_{\text {sunlight }} \pi R^{2} \Delta t=4.6 \times 10^{20} \mathrm{~J}
$$

We use the area of a circle here since from the earth only blocks this much sunlight. We used the surface area of a sphere for the power through conduction because the conduction happens all over the surface of the earth.

