$$\vec{F}_B = q\vec{v} \times \vec{B}$$

$$\vec{F}_B = I\vec{L} \times \vec{B}$$

$$B = \alpha I$$

$$\mathcal{E} = -rac{d}{dt} ec{B} \cdot ec{A}$$

induced current opposes change

1 A wire carrying a current *I* pierces a piece of papers so that the current is normal to the surface of the paper as shown. The current produces a magnetic field. There are four small squares draws around the edge of the paper. Indicating the direction of the magnetic field at each small square.

2 A wire that is 0.5 meters long is running along the front edge of your desk. A current of 8 amps is going to the right in the wire. A horizontal magnetic field of 0.8 Tesla is filling your room. The field is directed from the front edge of your desk to back edge.

- (a) What is the direction of the force on the wire caused by the magnetic field?
- (b) What is the magintude of the force on the wire?
- **3** A square loop of wire with a resistor is formed. A magnet field is normal to the loop as indicated. The field strength increases from 7 to 11 tesla in 2 seconds.
 - (a) What is the magnitude of the current in the resistor while the field is changing?
 - (b) Is the current in the resistor going right or left? $L=0.2 \mathrm{m}$ and $R=2 \Omega$

$$\mathcal{E} = -\frac{d}{dt} \overrightarrow{B} \cdot \overrightarrow{A} = -\frac{d}{dt} \overrightarrow{B} A$$

$$|\mathcal{E}| = \frac{B_f - B_i}{\Delta t} \quad L^2$$

$$= \frac{11 - 7}{2} (0.2)^2 = 0.08 V$$

$$I = \frac{V}{R} = \frac{0.08V}{2\Omega} = 0.04 A$$

$$n = \frac{c}{v} \longrightarrow \lambda = \frac{\lambda_0}{n}$$

$$n_1\sin\theta_1 = n_2\sin\theta_2$$

$$\frac{1}{d_o} + \frac{1}{d_i} = \frac{1}{f}$$

$$d_{0} = \chi_{e} - \chi_{o} = -(\chi_{o} - \chi_{I})$$

$$d_{i} = \chi_{i} - \chi_{I}$$

