) or just a ve
workable com
ead function ;

ms fo be 103
i, whatis it tha
blur any phot

tis also used j
d in astronom
1ages from the
1 mirror had k
its managed to.

T)ERHAPS the most common use of computers in physics is for the solution
P of differential equations. In this chapter we look at techniques for solving
ordinary differential equations, such as the equations of motion of rigid bodies
or the equations governing the behavior of electrical circuits. In the following
chapter we look at techniques for partial differential equations, such as the

wave equation and the diffusion equation.

8.1 FIRST-ORDER DIFFERENTIAL EQUATIONS WITH ONE VARIABLE

We begin our study of differential equations by looking at ordinary differen-
tial equations, meaning those for which there is only one independent variable,
such as time, and all dependent-variables are functions solely of that one in-
dependent variable. The simplest type of ordinary differential equation is a
first-order equation with one dependent variable, such as

dx 2x 8.1)

dr ot

This equation, however, can be solved exactly by hand by separating the vari-
ables. There’s no need to use a computer in this case. But suppose instead that
you had '

dx 2x | 3x? -

-t (8.2)
Now the equation is no longer separable and moreover it’s nonlinear, meaning
that powers or other nonlinear functions of the dependent variable x appear
in the equation. Nonlinear equations can rarely be solved analytically, but
they can be solved numerically. Computers don’t care whether a differential
equation is linear or nonlinear—the techniques used to solve it are the same

either way.

CHAPTER 8 | ORDINARY DIFFERENTIAL EQUATIONS

The general form of a first-order one-variable ordinary differential equation we can get ¢

is dx like. As we:
T f(x,1), (8.3) approximatit
. . . Thus, for
where f(x,t) is some function we specify. In Eq. (8.2) we had f (x,t) = 2x/t+ initial condit
3x2/#3. The independent variable is denoted t in this example, because in neat
. ato b. To do

physics the independent variable is often time. But of course there are other and use (8.6
possibilities. We could just as well have written our equation as . y)
> solving differ

dy hard Euler.

EXAMPLE 8.1

In this chapter we will stick with £ for the independent variable, but it's worth
bearing in mind that there are plenty of examples where the independent vari-

able is not time.

To calculate a full solution to Eq. (8.3) we also require an initial condition
or boundary condition—we have to specify the value of x at one particular
value of t, for instance at t = 0. In all the problems we'll tackle in this chapter
we will assume that we're given both the equation and its initial or boundary

Let us use Eu

with the initia
fromt = 0to

conditions.
- from math
, from nump
8.1.1 EULER’S METHOD - from pyla
Suppose we are given an equation of the form (8.3) and an initial def f(x,t
that fixes the value of x for some £. Then we can write the value o re::]r

interval k later using a Taylor expansion thus:

(¢4 1) = 5(0) dx . ,d% 2200
x(t+h) =x(t) +h— + =5+ b =10.0
de 27 d? N = 1000
= x(t) +f(x,1) + O("), b= (b-a),
x = 0.0

where we have used Eq. (8.3) and O(K?) is a shorthand for terms that go 2
or higher. If k is small then h? is very small, so we can neglect the terms nn
and get
x(t+h) = x(t) +hf(x). (
If we know the value of x at time £ we can use this equation to calculate
value a short time later., Then we can just repeat the exercise to calculate ¥
other interval k after that, and so forth, and thereby calculate x ata SUCCes
of evenly spaced points for as long as we want. We don’t get x(t) for allval
of t from this calculation, only at a finite set of points, but if Jr is small eno

xlabe]_ (rgn
ylabel ("X (
show ()

328

8.1 | FIRST-ORDER DIFFERENTIAL EQUATIONS WITH ONE VARIABLE

we can get a pretty good picture of what the solution to the equation looks
like. As we saw in Section 3.1, we can make a convincing plot of a curve by
approximating it with a set of closely spaced points.

Thus, for instance, we might be given a differential equation for x and an
initial condition at f = 4 and asked to make a graph of x(t) for values of ¢ from
a2 to b. To do this, we would divide the interval from 4 to b into steps of size h
and use (8.6) repeatedly to calculate x(t), then plot the results. This method for
solving differential equations is called Euler’s method, after its inventor, Leon-
hard Euler.

EXAMPLE 8.1: EULER’S METHOD

Let us use Euler’s method to solve the differential equation

dx .
n = = —x* +sint . (8.7)
dt
iy
51 with the initial condition x = 0 at = 0. Here is a program to do the calculation
y from t = 0 to t = 10 in 1000 steps and plot the result:
from math import sin File: euler.py
from numpy import arange
from pylab import plot,xlabel,ylabel,show
on def f£(x,t):
ort return -x#*3 + sin(t)
a=0.0 # Start of the interval
b =10.0 # Fnd of the interval
N = 1000 # Number of steps
3.5) h = (b-a)/N # Size of a single step
) X =10.0 # Initial condition
sh
i tpoints = arange(a,b,h)
Xpoints = []
'3.6) for t in tpoints:
' xpoints.append(x)
. the X += hxf(x,t)
an-
1o Plot (tpoints,xpoints) ’
Jues xlabel ("t")
h Ylabel("x(t)n)
f)llg ShOW()

CHAPTER 8 | ORDINARY DIFFERENTIAL EQUATIONS

size of the h
gle step of {

1.0 ‘ . . .
smaller so w
But we ¢
0.5¢ many. If we
size h, then 1
the values of
g 0o] ues of x (wh
’ error incurre
given by the
—0.5)] N
)
—10) r} 3 8 10

where we ha
imation if i
Notice the
the individue
by a factor of
make the errc

Figure 8.1: Numerical solution of an ordinary differential equation. A solution to
Eq. (87) from x =0tox = 10, calculated using Euler’s method.

If we run this program it produces the picture shown in Fig. 8.1, which, as
we'll see, turns out to be a pretty good approximation to the shape of the true
solution to the equation. In this case, Fuler’s method does a good job. ‘

In general, Euler’s method is not bad. It gives reasonable answers in many live with it. B
cases. In practice, however, we never actually use Euler’s method. Why no : i
Because there is a better method that’s very little extra work to program, Iuc
more accurate, and runs just as fast and often faster. This is the so-calle
Runge-Kutta method, which we'll look at in a moment. First, however, let 12 THER

look a little more closely at Euler’s method, to understand why it’s not ideal ou might thiy
Euler’s method only gives approximate solutions. The approximation atis e Taylor exg
because we neglected the h? term (and all higher-order terms) in Eq. (8.5) Th in ac

I’s not completely correct to say that we never use Fuler’s method. We never Us€ it

solving ordinary differential equations, but in Section 9.3 we will see that Buler’s method 12 us !
thod 15

for solving partial differential equations. Tt's true in that case also that Euler’s me

very accurate, but there are other bigger sources of inaccuracy when solving partial differert, would giv

equations which mean that the inaccuracy of Euler’s method is moot, and in such situati $ approach ;

simplicity makes it the method of choice. . ow th .
e deriv

8.1 | FIRST-ORDER DIFFERENTIAL EQUATIONS WITH ONE VARIABLE

size of the h? term is %hz d2x/d#2, which tells us the error introduced on a sin-
gle step of the method, to leading order, and this error gets smaller as h gets
smaller so we can make the step more accurate by making small.

But we don’t just take a single step when we use Euler’s method. We take
many. If we want to calculate a solution from t = a tot = b using steps of
size h, then the total number of steps we need is N = (b — a)/h. Let us denote
the values of t at which the steps fall by #; = a + kh and the corresponding val-
ues of x (which we calculate as we go alang) by xx. Then the total, cumulative
3 error incurred as we solve our differential equation all the way from 4 to b is
given by the sum of the individual errors on each step thus:

() B[Y
; lhz 117 _—'l]’l hl — glh 24
;;Z;')z <df2>§§§: 2 ;; <df i /a ar ¢

= Ln[f(x(b),b) — f(x(a),a)], (8.8)

where we have approximated the sum by an integral, which is a good approx-
imation if /1 is small.

Notice that the final expression for the total error is linear in , even though
the individual errors are of order #?, meaning that the total error goes down
by a factor of two when we make 1 half as large. In principle this allows us to
make the error as small as we like, although when we make & smaller we also
increase the number of steps N = (b—a)/h and hence the calculation will take
proportionately longer—a calculation that’s twice as accurate will take twice
aslong.

Perhaps this doesn’t sound too bad. If that’s the way it had to be, we could

live with it. But it doesn’t have to be that way. The Runge-Kutta method does
much better.

8.1.2 THE RUNGE-KUTTA METHOD

You might think that the way to improve on Euler’s method would be to use
the Taylor expansion of Eq. (8.5) again, but keep terms to higher order. For

nstance, in addition to the order & term we could keep the order h? term,
Which is equal to
2 d2x_ 1,0df i
| W =g (8.9) |
2}:1 s would give us a more accurate expression for x(t + h), and in some cases 7 |
approach might work, but in a lot of cases it would not. It requires us to
oW the derivative d f /dt, which we can calculate only if we have an explicit

331

CHAPTER 8 ‘ ORDINARY DIFFERENTIAL EQUATIONS

approxim
and the tr
Now ¢

ﬂ Euler’s method
Slope at t .

midpoint
olate usin,
significani
Runge-Kt

In mat]
around ¢ -

/

Slope at
t+h/2

t t+h x(t+
Figure 8.2: Euler’s method and the second-order Runge—Kuita method. Euler’s
method is equivalent to taking the slope dx/dt at time ¢ and extrapolating it into the
future to time ¢ -+ k. A better approximation is to perform the extrapolation using the
slope at time t + 3.

Similarly v
x(t)

Subtracting

expression for f. Often we have no such expression because, for instance, the.
function f is calculated as the output of another computer program ot function
and therefore doesn’t have a mathematical formula. And even if f is known
explicitly, a method that requires us to calculate its derivative is less conve-
nient than the Runge-Kutta method, which gives higher accuracy and doesn’t
require any derivatives.

The Runge-Kutta method is really a set of methods—there are many
them of different orders, which give results of varying degrees of accuracy.
fact technically Euler’s method is a Runge-Kutta method. It is the first-ord
Runge-Kutta method. Let us look at the next method in the series, the secon
order method, also sometimes called the midpoint method, for reasons that wi
shortly become clear. :

Euler’s method can be represented in graphical fashion as shown in Fig-
The curve represents the true form of x(t), which we are trying to calculat
The differential equation dx/dt = f(x, t) tells us that the slope of the solutio
is equal to the function f(x, t), so that, given the value of x at time we:cd
calculate the slope at that point, as shown in the figure. Then we extrapo ,
that slope to time t + h and it gives us an estimate of the value of x(t+ otice how {
which is labeled “Euler’s method” in the figure. If the curve of x(t) wer '
fact a straight line between £ and £ + h, then this method would give a per!
estimate of x(t + k). Butif it's curved, as in the picture, then the estimate is O

332

| 8.1 ’ FIRST-ORDER DIFFERENTIAL EQUATIONS WITH ONE VARIABLE

approximate, and the error introduced is the difference between the estimate
and the true value of x(t + h).
Now suppose we do the same calculation but instead use the slope at the
midpoint # 4- 2k to do our extrapolation, as shown in the figure. If we extrap-
olate using this slope we get a different estimate of x(¢ + k) which is usually
significantly better than Euler’s method. This is the basis for the second-order
Runge-Kutta method.

In mathematical terms the method jnvolves performing a Taylor expansion
around t + 11 to get the value of x(t + h) thus:

d &
x(t+h) = x(t + 1h) +§h<d—’:> + %h2<a—2’5> +O@®). (8.10)
t+1h t+3h

Similarly we can derive an expression for x(t):

2
x(t) = x(t + 1h) — %h(%) + 11 (%—f) +O(R). (811)
' £ t+1h £ t+31h .
Subtracting the second expression from the first and rearranging then gives
x(t+H) = x(t) + h (ﬂ> + 00
dt /11
2
= x(t) + hf (x(t + 3h), t + 3h) + O(K°). (8.12)

Notice that the term in k2 has completely disappeared. The error term is now
O(h?), so our approximation is a whole factor of & more accurate than before.
If h is small this could make a big difference to the accuracy of the calculation.
Though it looks promising, there is a problem with this approach: Eq. (8.12)
requires a knowledge of x(t + 3h), which we don’t have. We only know the
value at x(t). We get around this by approximating x{t + 1h) using Euler’s
method x(t + 1h) = x(t) + 1hf(x,t) and then substituting into the equation
above. The complete calculation for a single step can be written like this:

k1 = hf(x,t), (8.13a)
ko = hf(x+ 3kt + 1h), (8.13b)
x(t+h) = x(t) + ky. (8.13c)

Notice how the first equation gives us-a value for k; which, when inserted into

the
he second equation, gives us our estimate of x(# 4+ k). Then the resulting

\'alfle of ky, inserted into the third equation, gives us the final Runge-Kutta
Sstimate for x(t 4 h)

333

CHAPTER 8 \ C)RIHDL&RY’DIFFEREP¢TLAL,ECNJAITCHQS

These are the equations for the second-order Runge-Kutta method. As with EXAMPL]
the methods for performing integrals that we studied a Chapter 5, a “second-
order” method, in this context, is a method accurate to order h?, meaning that Let us us
the error is of order k3. Euler’s method, by contrast, is a first-order method equation
with an error of order h2. Note that these designations refer to just a single our progi
step of each method. As discussed in Section 8.1.1, real calculations involve from
doing many steps one after another, with errors that accumulate, so that the from
accuracy of the final calculation is poorer (typically one order in h poorer) than from
the individual steps.

The second-order Runge-Kutta method is only a little more complicated to def £
program than Euler’s method, but gives much more accurate results for any T
given value of k. Or, alternatively, we could make 1 bigger—and so take fewer
steps—while still getting the same level of accuracy as Euler’s method, thus E : (1)(
creating a program that achieves the same result as Euler’s method but runs N = 1
faster. h=(

We are not entirely done with our derivation yet, however. Since we don't:
have an exact value of x(f + 3h) and had to approximate it using Euler’s. tpoint

xpoini

method, there is an extra source of error in Eq. (8.12), coming from this second
approximation, in addition to the O(K®) error we have already acknowledged.

How do we know that this second error isn’t larger than O(k?) and doesn’t. }f(o; 2
make the accuracy of our calculation worse? 1
We can show that in fact this is not a problem by expanding the quanti ki
flx+ S, t+ 11) in Eq. (8.13b) in its first argument only, around x(t+ 3h): <
X

F(x(t) + Syt + 3h) = f(x(t+ 3h), £+ 3H)
d plot(t
)+ 32 303 +O([x(t) + b =i+ ke
x(t+h/2),t+h/2 ylabel
show()

But from Eq. (8.5) we have
x(t+ 3h) = x(t) + 3hf(x,t) + O(K?) = x(t) + k1 + O,
s0 x(t) + Mk — x(t + 3h) = O(K?) and
() + Yot 4 1) = f(x(t 4+ 3h) 4 3h) + O(k?).

This means that Eq.(8.13b) gives ky = hf (x(t + 1n),t+3h) + O(h?), and Iy
there’s no problem—our Fuler’s method approximation for x(t+ 1h) doe
troduce an additional error into the calculation, but the error goes like h° al
hence our second-order Runge-Kutta method is still accurate to O(r®) ove

8

334

s
|
j
z_
E
%
z

8.1 ’ FIRST-ORDER DIFFERENTIAL EQUATIONS W

EXAMPLE 8.2: THE SECOND-ORDER RUNGE-KUTTA METHOD

Let us use the second-order Runge-Kutta method to solve the same differential

equation as we solved in Example 8.1. The program is a minor modification of
our program for Fuler’s method:

from math import sin
from pumpy import arange
from pylab import plot,xlabel,y}dabel,show

def f(x,t):
return -x¥*3 + sin(t)

a=0.0

b= 10.0

N = 10

h = (b-a)/N

tpoints = arange(a,b,h)
zpoints = [I

x = 0.0

for t in tpoints:
xpoints.append (x)
ki = h*f(x,t)
k2 = h*f(x+0.5%kl,t+0. 5xh)
x += k2 A

i

plot (tpoints,xpoints)
xlabel ("t")

ylabel ("x(t) ")

show ()

It we run this program repeatedly with different values for the number of
points N, starting with 10, then 20, then 50, then 100, and plot the results,
we get the plot shown in Fig. 8.3. The figure reveals that the solution with 10
P"%“ts is quite poor, as is the solution with 20. But the solutions for 50 and 100
points look very similar, indicating that the method has converged to a result
?EOSQ to the true solution, and indeed a comparison with Fig. 8.1 shows good
agreement with our Euler’s method sélution, which used 1000 points.

ITH ONE VARIABLE

File: rk2.py

335

CHAPTER 8

336

ORDINARY DIFFERENTIAL EQUATIONS

mel

cur:
tion
fina
resu
fors
muc
orde

with
as E1
resul
F
the fi
equat
Itis t
Figure 8.3: Solutions calculated with the second-order Runge-Kutta method. Solu- com
tions to Eq. (8.7) calculated using the second-order Runge-Kutta method with N =10, P
20, 50, and 100 steps. .

8.1.3 THE FOURTH-ORDER RUNGE-KUTTA METHOD : th
e fo

We can take this approach further. By performing Taylor expansions aroun modif
various points and then taking the right linear combinations of them, we cail ;

arrange for terms in 13, k%, and so on to cancel out of our expressions, and s T

get more and more accurate rules for solving differential equations. The down fro
ca ; fre
side is that the equations become more comphcated as we go to higher orde!

Many people feel, however, that the sweet spot is the fourth-order rule, which det

offers a good balance of high accuracy and equations that are still relativ
simple to program. The equations look like this:

ki = hf(x, 1),
kzzhf(JC+%k1,t+%h), . N
ks = hf (x + 3ko £+ 5H),
ky = hf(x+ks, t+h),
x(t+h) = x(t) + 2o + 2Ky + 2ks + ka). : -

o
i
i
;

f

8.1 l FIRST-ORDER DIFFERENTIAL EQUATIONS WITH ONE VARIABLE

This is the fourth-order Runge—Kutta method, and it is by far the most common
method for the numerical solution of ordinary differential equations. It is ac-
curate to terms of order h* and carries an error of order h°. Although its deriva-
tion is quite complicated (we'll not go over the algebra—it’s very tedious), the -
final equations are relatively simple. There are just five of them, and yet the
result is a method that is three orders of & more accurate than Euler’s method
for steps of the same size. In practice this can make the fourth-order method as
much as a million times more accurate than Euler’s method. Indeed the fourth-
order method is significantly better even than the second-order method of Sec-
tion 8.1.2. Alternatively, we can use the fourth-order Runge-Kutta method
with much larger i and many fewer steps and still get accuracy just as good
as Euler’s method, giving a method that runs far faster yet gives comparable
results.

For many professional physicists, the fourth-order Runge-Kutta method is
the first method they turn to when they want to solve an ordinary differential
equation on the computer. It is simple to program and gives excellent results.
It is the workhorse of differential equation solvers and one of the best known
computer algorithms of any kind anywhere.

S S

lu-

10,
EXAMPLE 8.3: THE FOURTH-ORDER RUNGE-KUTTA METHOD
Let us once more solve the differential equation from Eq. (8.7), this time using
the fourth-order Runge-Kutta method. The program is again only a minor
ind modification of our previous ones:
can
| s0 from math import sim File: rk4.py
e from nuumpy import arange
dor from pylab import plot,xlabel,ylabel,show
er.
aich def f£(x,t):
vely return -x#*#3 + sin(t)
a=0.0
17a) b =10.0
N= 10
17b)
b= (ma)/w
a7e)
17d) . tpoints = arange(a,b,h)

Xpoints = []
X = 0.0

337

CHAPTER 8 l ORDINARY DIFFERENTIAL EQUATIONS

calcula
points.

One
of all Ry
be obvi
factors «
method
The solt
if you d
get a so.
is much
that use
the equa
it becaus
there wil
computa
it is likel
error is 1

the fourth-order Runge-Kutta method. Solu-

Figure 8.4: Solutions calculated with
urth-order Runge-Kutta method with N =10,

tions to Eq. (8.7) caleulated using the fo
20, 50, and 100 steps.

for t in tpoints:

xpoints . append (x)

ki = hxf(x,t)

k2 = h¥f (x+0.5¥kl,t+0. 5¥h)
h#f (x+0 . 5%k2,t+0.5¥h)

k3 =
k4 = h#f (x+k3,t+h)
X += (k1+2*k2+2*k3+k4)/6

plot (tpoints,xpoint s)

xlabel("t")

ylabel("x(t)")

show () .
Circuii

Again we run the program repeatedly with N = 10, 20, 50, and 100. Fi
shows the results. Now we see that, remarkably, even the solution W} o
pec

s is close to the final converged solution for the equation. with ont the ¢
ough to make the ghR:

lje close tO th
th-order metho

point
points we get quite a jagged curve—20 points is not en
appear smooth in the plot—but the points nonetheless

solution of the equation. With only 20 points the four

338

8.1 ! FIRST-ORDER DIFFERENTIAL EQUATIONS WITH ONE VARIABLE

calculated a solution almost as accurate as Euler’s method with a thousand
points.

One minor downside of the fourth-order Runge—-Kutta method, and indeed
of all Runge-Kutta methods, is that if you get the equations wrong, it may not
be obvious in the solution they produce. If, for example, you miss one of the

factors of 1 or 2, or have a minus sign when you should have a plus, then the

method will probably still produce a solution that looks approximately right.

The solution will be much less accurate than the correct fourth-order method—

if you don’t use the equations exactly as in Eq. (8.17) you will probably only

get a solution about as accurate as Euler’s method, which, as we have seen,

is much worse. This means that you must be careful when writing programs

that use the Runge-Kutta method. Check your code in detail to make sure all

the equations are exactly correct. If you make a mistake you may never realize

it because your program will appear to give reasonable answers, but in fact o
there will be large errors. This contrasts with most other types of calculation in -
computational physics, where if you make even a small error in the program

it is likely to produce ridiculous results that are so obviously wrong that the

error is relatively easy to spot.

Exercise 8.1: A low-pass filter

Hereis a simple electronic circuit with one resistor and one capacitor:

R I

Vin — ANV Vou

G

0

his circuit acts as a low-pass filter: you send a signal in on the left and it comes out

e 84 fltered on the right.
with ZQ hl'ghUiSing Ohm’s law and the capacitor law and assuming that the output load has very
only 20 aOWHT}}:edance', so that a negligible amount of current flows through it, we can write
curve thro € equaftlons governing this circuit as follows. Let I be the current that flows
;188 Ginal ugh R and into the capacitor, and let Q be the charge on the capacitor. Then:
1
hod ha® IR=Via—Vour, Q=CVou, I= %%

339

CHAPTER 8 ‘ ORDINARY DIFFERENTIAL EQUATIONS

ond equation into the third, then substituting the result into the first

Substituting the sec
equation, we find that Vin — Vour = RC (dVout/dt), Or equivalently
dVout 1
3 = e (Vn = Vo)

a) Write a program (or modify a previous one) to solve this equation for Vou(t)
using the fourth-order Runge-Kutta method when the input signal is a square-

wave with frequency 1 and amplitude 1:

1 if | 2t] is even,

Va1 { 1 if |2¢] is odd, (618) If we «
where | x| means x rounded down to the next lowest integer. Use the program to
make plots of the output of the filter circuit from t = 0tof = 10 when RC = 0.0,
0.1, and 1, with initial condition Veue(0) = 0. You will have to make a decision
about what value of h to use in your calculation. Small values give more accurate
results, but the program will take longer to run. Try a variety of different values
and choose one for your final caleulations that seems sensible to you.

then w

which
equatic
for vali
A program similar to the one you wrote is running inside most stereos and music back o1
reate the effect of the “bass” control. In the old days, the bass control on

players, to C
a stereo would have been connected to a real electronic low-pass filter in the amplifier

circuitry, but these days there is just a computer processor that simulates the behavior
of the filter in a manner similar to your program. |
uppos

b) Based on the graphs produced by your program, describe what you see and ex-
plain what the circuit is doing. :

8.1.4 SOLUTIONS OVER INFINITE RANGES

We have seen how to find the solution of a differential equation starting fro
a given initial condition and going a finite distance in t, but in some cases fferen
want to find the solution all the way out to t = co. In that case We canty App
use the method above directly, since we'd need an infinite number of steps
reach t = oo, but we can play a trick similar to the one we played when ¥
were doing integrals in Section 5.8, and change variables. We define ‘

t u
111 or equivalently ¢ —y

so that as t — 60 we have 4 — 1. Then, using the chain rule, we can 1€
our differential equation dx/dt = f (x,t) as

dx du
@ H{ - f(x/t)r amy

u

340

