
Physics 140 Homework Due 5/18 SPRING 2017

Short answer

1. In his devilish proposal for testing the limits of quantum mechanics on a cat,
Schrödinger concocts a mechanism by which we can imagine establishing a su-
perposition of macroscopic physical variables, being, in the case of the cat, life
and death. Why do we never observe macroscopic superpositions in our daily
lives?

The answer is environmental decoherence. Macroscopic systems are inevitably
and irrevocably coupled to large ambient Hilbert spaces of atoms, photons, etc.
In the absence of special mechanisms to protect quantum coherence, interac-
tions with this environment quickly – much faster than any other dynamics of
the system – turn any macroscopic superposition into a mixture. A mixture
represents a situation where one of the possibilities of the original superposition
has been realized, although we as observers may not yet have determined which
one.

Handwritten solutions follow, but first, comments on two of the problems:

1. Almost any setting of the SG apparatus will allow you to distinguish statisti-
cally between the pure and mixed states, in that the average numbers of spins
measured up and down will differ. However, depending on your choice, with
only one hundred spins measured, natural statistical variations might dwarf the
expected differences between pure and mixed states.

On the other hand, if you choose to put the apparatus along the pure state |ψ〉,
then every pure state spin will be measured spin up along that axis. A single
spin-down measurement implies you are measuring from the mixed state. That’s
the cleanest sort of measurement you can image and the one Prof. Wensley
indicates in his solution.

Another decent choice some of you made was to measure in the |x±〉 basis. Then
you would compute the probabilities of spin-up / spin-down measurements and
show that they differ for the two boxes:
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For the mixed state, you can either use the density matrix
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or you can tabulate probabilities. I’ll do the latter. With 1/4 probability you
have the state |z+〉, for which
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With 3/4 probability you have the state |z−〉, for which
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Putting these results together,
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A measurement in the |z±〉 basis will not allow you to distinguish between the

two boxes. For the pure state |ψ〉 = 1
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On the face of it these are the same probabilities you get for the mixed state.

4. If you reliquish information about the second particle, both reduced density
matrices represent a classical mixture of possibilities for the first particle, 50/50
|0〉 or |1〉. The differences between the two Bell states lie in the different corre-
lations between the particles.


























