Introduction to Physics I

Physics 001, Fall 2018

Wherein a comically short amount of time is spent understanding what the world's greatest scientific minds needed the entire 17th century to establish.
Early Draft: June 4th, 2018
Instructional Team
Flipped Classroom

Conventional lecture presentation is not working well for the majority of students. It is incumbent on faculty to keep searching for classroom methodologies that help a larger fraction of the class succeed. The author of our textbook (see below) is a leading proponent of the "flipped classroom." In this methodology, class time is spent doing problems, using peer instruction and answering questions. Listening to lectures prepared by the professor is done by students on their own before class!

All of last fall semester's flipped classroom mini-lectures are on YouTube and I will be creating new ones as we cover the material. One way to relate the mini-lectures to the other course materials is that they are there to highlight your textbook and pace your reading. They are also there to share my intuition on the most challenging sections with you. The mini-lectures are short (10-15 minutes — not one hour!) with multiple places to pause to study the corresponding sections of the textbook.

Although students have demonstrably higher success rates with the flipped methodology, many of them desire the traditional lecture format because it is familiar, and it is at least a system in which they are "getting by." Unfortunately, "getting by" is not remotely sufficient to create a foundation of knowledge for an up-and-coming generation of scientists and engineers.

We will be implementing as many flipped classroom techniques as we can collectively handle. Please bear with me, and if you are finding the flipped classroom disorienting, perhaps you could be encouraged by a look into the literature on its effectiveness: for example, a study involving 6,000 students who were studying the same material as you will be studying this semester, and which demonstrated that flipped classroom resulted in more than twice — yes, more than twice! — the gain in performance on standardized tests as conventional instruction.

Course Materials

The campus bookstore has a discounted package price on the textbook and workbook:


We need to cover Chapters 1-17 of your textbook in 14 weeks — yikes! Actually, it might appear that there are 14 weeks in the semester, but with Monday off for Labor Day, two days off Thursday and Friday as a midterm break, and Wednesday through Friday off the week of Thanksgiving, we actually have only 14 * 4 - 6 = 50 classes, which is the equivalent of only 12 1/2 weeks times four classes per week.

Assessment and Expectations

15% for the homework, 15% on each of four midterms (totaling 60%), and 25% final. Unless otherwise specified, on-line problem sets must be submitted to the on-line homework system at midnight on the day they are due. If there are handed-in problem sets, they will be due at the beginning of class.

Your laboratory work is graded separately. The lab professors have their own syllabi.

Close to 50 of you are launching on this journey. As you will see, I will be putting in a lot of time to help you be successful. I don't have unlimited time though. Things that are not very constructive uses of anybody's time — and which I won't be very accomodating of — are:

  • Requests for alternative ways to make-up poor scores or missed material. The material is extremely carefully chosen by many physicists working over multiple decades who figured out what is essential for you to know. There isn't a body of alternate material that can substitute for what we are covering.
  • Requests for intermediate grades to be computed other than those that faculty are required to submit at mid-term. That said, I will often provide histograms for exam scores, and you can at least see roughly where you stand in the class. I don't make the final curve until after the final exam is graded and its score is folded in.
  • Guidance for what will and won't be on the exams. I will sometimes say that out of necessity we must skip certain sections of the book. Other than that, you are responsible for Chapters 1-17 and that is pretty much the whole story.

I will be tirelessly accomodating for requests for help with the concepts.


If you are a STEM (Science, Technology, Engineering and Mathematics) major, introductory physics is your single most important class. This is because physics is at the foundation of almost every other science and engineering discipline. Even the mathematics you will use this semester was originally developed by physicists (especially Isaac Newton) to solve physics problems.

Therefore, if you are a STEM major, you should plan to spend more time on this class than any other. As a rule of thumb, you will spend around two hours outside of class for every hour in class. If getting behind and then trying to catch up before each exam is a strategy that has worked for you in the past, please be forewarned that there is too much rigorous material covered in college-level physics for that strategy to work out.

By the way, this course is sometimes taken to satisfy part of the Pathways to Knowledge Core Curriculum Requirement. Therefore, attention will be paid to the Mathematical and Scientific Understanding goals and outcomes.

A misconception: physics professors often hear from some students that "I understand the material but I can't do the problems." Physics is about being able to solve a wide variety of problems starting from a small number of principles. Therefore, "understanding the material but not being able to do the problems" is an oxymoron. Above all else, keep doing problems, and do them mostly — if not entirely — on your own. This is what will make you good at physics.

Of course if you are flat-out stuck, ask a classmate for a pointer, come to my office hours, or visit the STEM Center (see below), but do not fall into the trap of just "following along" with other people's solutions. Virtually all understanding that you feel you are gaining in that way is illusory.

Finally, I will be doing everything I can to make the material intelligible, but the biggest variable is how much you embrace the subject matter and how much of a wellspring of focus and self-discipline you can find within yourself. Not finding the hours to do the work on your own, or being motivated just to get a grade rather than to understand the material are probably the two main reasons students get behind or lose motivation and eventually abandon STEM majors for something else that has different demands.

Academic Honor Code

The Saint Mary's Academic Honor Code (AHC) is applicable to this (and all) Saint Mary's courses. You are responsible for familiarizing yourself with it: AHC Website. You may also wish to consult the view of the Academic Honor Code in the Faculty Handbook.

Some students are under the assumption that there are three or so absences excusable per class per semester (perhaps because some classes that are graded on participation allow that). There is no such assumption for this class. The material builds very rapidly, and it is unavoidably cumulative. Therefore, you are 100% responsible for the material in all classes. I can provide an outline, and you should ask a fellow student for detailed notes on what was covered in any classes you are forced to miss.

Student Disability Services

Accomodations that take into account the context of the course and its essential elements for individuals with qualifying disabilities are extended through the office of Student Disability Services (SDS). Information regarding the services available may be found on the SDS Office Website.

STEM Center Tutoring

Saint Mary’s has a center for students taking STEM classes in Assumption Hall, Room 200. The STEM Center provides several services, including free tutoring in math, chemistry, physics, and biology. Please be very respectful of the Assumption Hall residents.


John Baptist de La Salle dedicated himself to serving students who could not afford the private tutoring that was the primary form of education in his day. Saint Mary's is an heir to that mission and its faculty and staff are entrusted with carrying it out.

It is my goal to make each of you feel and know that you are valued and belong, regardless of your background or demographic. Please let me know if I am falling short in that. We all have blinders. I am constantly re-examining and trying to correct my own.

A syllabus is not the place to enumerate all of the ways the physics faculty go out of their way to make everyone successful. We are in the business of teaching and doing physics and almost all of the time you will hear us talking about physics. Please be assured that we take the Saint Mary's mission very seriously even when we aren't talking about it.